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Abstract—We consider cell-based switch and router architec-
tures whose internal switching matrix does not provide enough
speed to avoid input buffering. These architectures require a sched-
uling algorithm to select at each slot a subset of input buffered cells
which can be transferred toward output ports. In this paper, we
propose several classes of scheduling algorithms whose stability
properties are studied using analytical techniques mainly based
upon Lyapunov functions. Original stability conditions are also de-
rived for scheduling algorithms that are being used today in high-
performance switch and router architectures.

Index Terms—Input buffered switches, Lyapunov methods,
scheduling algorithm, stability.

I. INTRODUCTION

A NUMBER of high-performance IP routers (for example,
the CISCO 12 000 [1], the Lucent Cajun [2] family, or

the Nortel Versalar TSR45000 [3]) are built around fast cell-
based switching fabrics. The design of these high-performance
routers generally does not adopt the classical output queueing
(OQ) architecture (where cells are stored at the output of the
switching fabric), preferring either input queueing (IQ) or com-
bined input/output queueing (CIOQ) structures. The reason is
that, in OQ, both the switching fabric and the output (and pos-
sibly input) queues in line cards must operate at a speed equal
to the sum of the rates of all input lines; since this speed grows
linearly with the number of switch ports, the OQ approach is im-
practical for large switches. Instead, in IQ schemes, all the com-
ponents of the switch (input interfaces, switching fabric, output
interfaces) can operate at a data rate which is compatible with
the data rate of input and output lines, and does not grow with the
switch size. The traditional performance penalty of IQ architec-
tures is due to head-of-the-line blocking in the case of a single
queue per input interface [4], but can be largely reduced by vir-
tual output queueing (VOQ) (also called destination queueing)
schemes [5], which organize input buffers in each line card into a
set of queues where cells awaiting access to the switching fabric
are stored according to their destination output cards.

A major issue in the design of IQ switches is that the access to
the switching fabric must be controlled by some form of sched-
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uling algorithm,1 which operates on a (possibly partial) knowl-
edge of the state of input queues. This means that control infor-
mation must be exchanged among line cards, either through an
additional data path or through the switching fabric itself, and
that intelligence and computational complexity must be devoted
to the scheduling algorithm, either at a centralized scheduler, or
at the line cards, in a distributed manner.

The problem faced by the scheduling algorithm can be
formalized as the classical graph theory problem of maximum
size or maximum weight matching on the bipartite graph
in which nodes represent input and output ports, and edges
represent cells to be switched. The optimal solution to this
problem is known, but complexity is too large for practical
implementations [8]. Several scheduling algorithms for IQ cell
switches were proposed and compared in the recent literature
[5], [9]–[12], [14]–[18]. They usually aim atmaximal size
or weight matching, which are sub-optimal solution of the
maximum size/weight matching at lower complexity, but were
shown (using simulation) to provide performances very close
to those of OQ architectures at reduced complexity. They
are however still relatively demanding in terms of computing
power and control bandwidth in switches with a large number
of input/output ports.

The complexity of the scheduling algorithm can be partly re-
duced [19] when the switching fabric, as well as the input and
output memories, operate with a moderate speed-up with respect
to the data rate of input/output lines. In this case, buffering is
required at outputs as well as inputs, and the term “combined
input/output queueing” (CIOQ) is used. Obviously, when the
speed-up is such that the internal switch bandwidth equals the
sum of the data rates on input lines, input buffers are useless.

Moreover, in [19], a speed-up equal to 2 in CIOQ switches,
independent of the number of switch ports, was shown to be
sufficient to exactly emulate an OQ architecture, at the expense
of quite complex scheduling algorithms, whose implementation
appears to be problematic. A similar result was proved in [20],2

while in [21], [22] the authors showed that a limited speed-up is
sufficient to emulate work-conserving switches.

1The term “scheduling algorithm” for switching architectures is used in the
literature for two different types of schedulers: switching matrix schedulers and
flow-level schedulers [6], [7].Switching matrix schedulersdecide which input
port is enabled to transmit in a non-purely-output-queueing switch; they avoid
blocking and solve contentions within the switching fabric.Flow-level sched-
ulersdecide which cell flows must be served in accordance to quality-of-service
(QoS) requirements. In this paper the term scheduling algorithm is only used to
refer to the first class of algorithms.

2An error in the algorithm presented in the paper was pointed out and a cor-
rection is reported on the web page of the first author.
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In previous papers [23], [24], we proved that simpler sched-
uling algorithms, whose implementation is surely feasible,
provide the same throughput performance of OQ with speed-up
equal to 2 (although the behavior of an OQ architecture is
not exactly emulated), and that a wide class of Maximal
Size Matching (MSM) scheduling algorithms (comprising
well-known scheduling algorithms, such as i-SLIP [9], [11] and
2DRR [16]), whose implementation is quite simple, also pro-
vides the same throughput performance of OQ with speed-up
equal to 2. These results provide a solid theoretical background
to manufacturers of high-speed switches and routers that will be
a major ingredient of future telecommunication infrastructures.

In this paper we present an extended and generalized version
of these stability results, proposing and studying simple classes
of novel scheduling algorithms as well as proving the stability of
well known scheduling algorithms that are being used today in
high-performance switch and router architectures. After intro-
ducing some definitions and preliminary results in Section II,
and our notation and modeling assumptions in Section III, we
provide stability results for rate-driven scheduling algorithms
in Section IV, for queue-length-driven scheduling algorithms in
Section V, for deterministic weighted scheduling algorithms in
Section VI, and for maximal size matching scheduling algo-
rithms in Section VII. Finally, we conclude the paper with Sec-
tion VIII.

In order to simplify the task of the reader, sections are di-
vided into two parts: in the first part we state our definitions,
theorems and corollaries; in the second part we provide proofs
of theorems and corollaries.

II. DEFINITIONS AND PRELIMINARY RESULTS

In this section we define three different criteria for the sta-
bility of systems of discrete-time queues, we recall some basic
results that are useful to prove stability, and we somewhat extend
and generalize those, so as to be able to compare two different
systems of queues, and to derive the conditions that allow the
stability of one system to be inferred from the stability of the
other.

Given a system of discrete-time queues of infinite capac-
ities, let be the row vector of queue lengths at time, i.e.,

, where is the number of customers
in queue at time .

Each queue-length evolution is described by
, where represents the number of customers ar-

rived at queue in time interval , and represents
the number of customers departed from queuein time in-
terval . Let . Let
be the vector of the numbers of arrivals at thequeues, and

be the vector of the numbers of de-
partures from the queues. With this notation, the equation
that describes the evolution of the system of queues is

(1)

We assume that vectors are independent and identically dis-
tributed, although this constraint can be relaxed in part.

Given a vector , we indicate with

its Euclidean norm: .

Definition 1: A system of queues achieves100%
throughput if

with probability 1.
Definition 2: A system of queues isweakly stable if, for

every , there exists such that
(where is the probability of event ).

Definition 3: A system of queues isstrongly stable if
.

Note that strong stability implies weak stability, and that
weak stability implies 100% throughput. Indeed, the 100%
throughput property allows queue lengths to indefinitely grow
with sub-linear rate, while the weak stability property entails
that the servers in the system of queues are able to process the
whole offered load, but the delay experienced by customers
can be unbounded. Strong stability implies, in addition, the
boundedness of the average delay of customers.

We assume that the process describing the evolution of the
system of queues is an irreducible discrete-time Markov chain
(DTMC), whose state vector at time is3 ,

, , , and .
is the combination of vector and a vector of integer
parameters. Let be the state space of the DTMC, obtained as
a subset of the Cartesian product of the state spaceof
and the state space of .

From definition 2 we can immediately see that if all states
are positive recurrent, the system of queues is weakly stable;

however, the converse is generally not true, since queue lengths
can remain finite even if the states of the DTMC are not positive
recurrent due to instability in the sequence of parameter .

Note that most systems of discrete-time queues of interest can
be described with models that fall in the DTMC class.

The following general criterion for the (weak) stability of sys-
tems that can be described with a DTMC is therefore useful in
the design of scheduling algorithms. This theorem is a straight-
forward extension of Foster’s Criterion; see [25]–[27].

Theorem 1: Given a system of queues whose evolution is
described by a DTMC with state vector , if a lower
bounded function , called Lyapunov function,

can be found such that and there
exist and such that

(2)

then all states of the DTMC are positive recurrent and the system
of queues is weakly stable.

Note that an explicit dependence of the Lyapunov function
on the time index is allowed, so that it is possible to explicitly
write .

If the state space of the DTMC is a subset of the Cartesian
product of the denumerable state space and afinite state
space , the stability criterion can be slightly modified, since
the stability of the system can be inferred only from the queue-
length state vector .

Corollary 1: Given a system of queues whose evolution is
described by a DTMC with state vector , and whose
state space is a subset of the Cartesian product of a denumer-

3In this paper denotes the set of nonnegative integers,denotes the set of
real numbers, and denotes the set of nonnegative real numbers.



106 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 1, FEBRUARY 2001

able state space and a finite state space , then, if a lower
bounded function , called Lyapunov function,

can be found such that and there
exist and such that

(3)

then all states of the DTMC are positive recurrent.
In this case, the system of discrete-time queues is weakly

stable iff all states of the DTMC are positive recurrent.
In the remainder of this paper we restrict our analysis to the

class of systems of queues for which Corollary 1 applies.
To extend the previous result, we obtain the following crite-

rion for strongstability:
Theorem 2: Given a system of queues whose evolution is de-

scribed by a DTMC with state vector , and whose
state space is a subset of the Cartesian product of a denumer-
able state space and a finite state space , then, if a lower
bounded function , called Lyapunov function,

can be found such that and there
exist and such that

(4)

then the system of queues is strongly stable.
A class of Lyapunov functions is of particular interest:
Corollary 2: Given a system of queues as in Theorem 2, then,

if there exist a symmetric copositive4 matrix , and
two positive real numbers and , such that, given
the function , it holds

(5)

then the system of queues is strongly stable. In addition, all the
polynomial moments of the queue-length distribution are finite.

This is a rephrasing of the results presented in [28, Sect. IV].
In particular, the identity matrix is a symmetric positive

semidefinite matrix, hence a copositive matrix; thus it is possible
to state the following

Corollary 3: Given a system of queues as in Theorem 2, then,
if there exists , such that

(6)

then the system of queues is strongly stable, and all the polyno-
mial moments of the queue-length distribution are finite.

A system of discrete-time queues is stable if all its queues
are stable; the standard approach to prove stability in queueing
systems is based on checking that the average number of arrivals
when the server is busy is smaller than the average number of
departures. This formulation is provided by the next theorem.
Its proof is given in terms of the Lyapunov function because it
is convenient for the extension to more complex setups that we
shall consider later in this paper.

Theorem 3: Consider a systems of queues composed of
queues. If there exists and such that

(7)

then the system of queues is strongly stable.

4An N �N matrixQ is copositive ifXQX � 0 8X 2 .

The following Theorem 4 is particularly important for the rest
of the paper, since it will allow us to compare different sched-
uling policies from the point of view of stability.

Theorem 4: Consider two systems of queuesand , each
one comprising queues. Let the arrival processes at each
queue for both systems be statistically identical. Let ,

, and , , be the queue-length and departure
vectors of and at time , respectively. Assume that (6)
holds for , and there exist , such that for

and

(8)

then system is strongly stable and all the polynomial mo-
ments of its queue-length distribution are finite.

III. PROOFS FORSECTION II

Proof of Theorem 2:Since the assumptions of Theorem 1
are satisfied, every state of the DTMC is positive recurrent and
the DTMC is weakly stable. In addition, to prove that the system
is strongly stable, we shall show that

.
Let be the set of values taken by for which
[where (4) does not apply]. It is easy to prove that is a

compact set. Outside this compact set, (4) holds, i.e.

Considering all ’s that do not belong to , we obtain

Instead, for , being a compact set

where is the maximum value taken by for
in .

By combining the two previous expressions, we obtain

is a constant such that
. Note that is finite,

being a compact set.
By summing over all from 0 to , we obtain

Thus, for any , we can write
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is lower bounded by definition; assume
. Hence

For , being and finite, we can write

Hence is bounded. Since
the DTMC has positive recurrent states, there exists

. Furthermore, if the sequence is
convergent, the sequence converges to
the same limit (being the Cesaro sum)

But the right-hand side was seen to be bounded; hence
.

Proof of Theorem 3:Starting from (6) we can write

For (and ) growing to infinity, since the number of
arrivals and departures in time intervalis bounded, we have

As a consequence

and from (7) we have

Thus, for some , ,

Proof of Theorem 4:If (6) holds for , then for some
,

But, as shown in the proof of Theorem 3,

For system being , hence , and
being , from (8) for we
get

Corollary 3 applies to system .

IV. NOTATION AND MODELING ASSUMPTIONS

We consider CIOQ cell-based switches withinput ports
and output ports, all at the same cell rate (and we call
them CIOQS). The switching fabric is assumed to be
nonblocking and bufferless, i.e., cells can only be stored at
the switch input and/or output ports. At each input port, cells
are stored according to a VOQ policy: one separate queue is
maintained for each output port. Thus, the total number of
queues in the switch is . Let be the queue at input
port storing cells directed to output port.

Although the internal switch speedup can in general be ob-
tained in several domains (time, space, wavelength, etc.), we as-
sume to operate in the time domain, and we say that the CIOQS
achieves speed-up when the cell transfer rate through the
switching fabric is times faster with respect to the rate of ex-
ternal input/output lines. Note that this requires the rateout of
input queuesas well as the rateinto output queuesto be times
the external input/output lines rate.

We callexternal time slotthe time needed to transmit a cell at
the data rate of the input/output lines. Theinternal time slotis,
instead, the time needed to transmit a cell at the data rate of the
switching fabric. The external time slot is times longer than
the internal time slot. Let be the average arrival rate of cells
at queue in cells/external slot.

Definition 4: The traffic pattern loading a CIOQS is admis-
sible if for each input port and each output port the total arrival
rates in cells/external slot are less than 1, that is

(9)

During each internal time slot, some cells may be transferred
from input queues to output ports. The set of cells transferred
during one internal time slot must satisfy two constraints: i) at
each internal time slot, at each input, at most one cell can be
extracted from the VOQ structure, and ii) at each internal time
slot, at most one cell can be transferred toward each output.

Definition 5: A set of cells extracted from queues is a
set of noncontending cells (also called a switching
matrix) if

and (10)

where is the number of cells extracted from .
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In a CIOQS with speed-up , a set of noncontending cells
can be transferred from input queues to output ports during each
internal time slot, so that sets of noncontending cells can be
transferred during each external time slot.

V. RATE-DRIVEN SCHEDULING ALGORITHMS

In this section we consider very simple scheduling algo-
rithms, which determine the set of noncontending cells that are
transferred from input queues to output ports in each internal
time slot with a random selection based on the values of the
average arrival rates of cells at queues , measured in
cells/external slot. Let

if

otherwise.

From (9), we obtain , and

Definition 6: A CIOQS adopts arandom rate-driven
(RRD) scheduling algorithm (SA) if the selection of the set of
noncontending cells to be transferred from inputs to outputs at
each internal time slot is performed according to the following
algorithm:

1. At each internal time slot, the th
input, within its own VOQ structure,
chooses queue with probability ;
with probability , no queue
in the VOQ is chosen for cell transfer.
Queue is the “candidate” of input

to attempt a cell transfer (toward
output ).

2. Among the contending candidate input
queues storing cells directed to the
same output, only one is enabled to
transfer its cell. The choice among con-
tending candidate input queues is per-
formed at random, according to a uniform
distribution; i.e., if there are can-
didates for the same output , only one
input receives a transfer grant, and the
probability of receiving the grant is

for each contending candidate input
queue.

Theorem 5: Under any admissible load, a CIOQS adopting
a RRD-SA is strongly stable for any speed-up .

Considering a CIOQS under a uniform traffic load, we have:

Corollary 4: Under any admissibleuniform load, a CIOQS
adopting a RRD-SA is strongly stable for any speed-up

, and for , i.e., for switches with
very large number of ports, a speed-up guarantees
the strong stability of the system.

If we use queue lengths (instead of probabilities) to break
the ties among the contending candidates, we obtain a different
scheduling algorithm.

Definition 7: A CIOQS adopts alongest queue rate-driven
(LQRD) scheduling algorithm if the selection of cells to be
transferred from inputs to outputs is performed according to the
following algorithm:

1. (As in Definition 6)
2. Among the contending candidate input

queues storing cells directed to the
same output, only one among the longest
queues is enabled to transfer its cell.
Ties are broken with a uniform random
choice.

Corollary 5: Under any admissible load, a CIOQS adopting
a LQRD-SA is strongly stable for any speed-up .

To improve the performance of the scheduling algorithm, we
can consider only the set of not-empty queues:

Definition 8: A CIOQS adopts anenhanced longest queue
rate-driven (ELQRD) scheduling algorithm if the selection of
cells to be transferred from inputs to outputs is performed ac-
cording to the following algorithm:

1. At each internal time slot, the th
input, within its own VOQ structure,
chooses a nonempty queue with a prob-
ability proportional to . Queue is
the “candidate” of input to attempt a
cell transfer (toward output ).

2. (As in Definition 7).

Corollary 6: Under any admissible load, a CIOQS adopting
a ELQRD-SA is strongly stable for any speed-up .

VI. PROOFS FORSECTION V

To prove the theorems presented in Section V, we first have
to derive some preliminary results. Letbe a finite set of non-
negative real numbers , such that the sum of all elements in

is not greater than one; let also be the number of
elements of , i.e., .

Let be a subset of such that , .
Let . Let be the set of all possible subsets of

, i.e., . It is easy
to see that . Let denote the power set of, i.e.,

.
Definition 9: Given , let be a function

such that ; let .
Definition 10: Given , let be a function ,

such that ; let .
Definition 11: Let .
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Proposition 1: For each set

Proof: By definition

(11)

We can group all the terms in
subsums, each one comprising different

terms. A bijective correspondence between sets and
subsums is established according to the following rule: each
subsum comprises the terms of (11) associated with the

different sets so that . It is thus pos-
sible to write

(12)

Since all the elements are nonnegative and their sum
is less or equal to 1, for each set

(13)

As a consequence, by substituting (13) in (12), we obtain

(14)

Proof of Theorem 5:Denote by and the numbers of
arrivals and departures, respectively, during time slotat queue

. The proof proceeds from the fact that, for all nonempty
queues , it is possible to find such that

, i.e., ;
this is sufficient to state that the system of queues is strongly
stable for Theorem 3.

Since with a RRD-SA the selection of the set of noncon-
tending cells is state-independent and memoryless, the evalu-
ation of is easy. In each internal time slot, the number of
cells leaving a queue can be either 0 or 1. Thus, equals
the probability that a cell from queue is selected for the
transfer. Consider a particular output; the probability that the
th input queue leading tois selected by the input is .

Since all choices are state-independent,is the probability
that queue is selected in any slot. Once selected, is
granted the transfer with probability 1 if no other queue storing
cells directed to output is selected by other inputs; the queue
is granted the transfer with probability 1/2 if only one other
queue storing cells directed to outputis selected, and so
on. Since all choices performed at each input are statistically
independent from each other, joint probabilities can be easily
evaluated as the product of marginal probabilities.

Let be the set of all except , i.e.,
, . Then, recalling Definitions 9

and 10, where

is the probability of serving queue once selected.
Using a speed-up factor equal to, the average number of

times a cell leaves any given input queue in an external time
slot is equal to times .

In order to prove that (note
that and are numbers: they do not depend on)
for speed-up equal to or greater than 2, it is sufficient to show
that , i.e., ,

.
Since

(15)

Moreover

(16)

since all terms in are nonnegative. By explicitly writing the
sums in (16) and by grouping all products ofelements of set

, after algebraic manipulations, it is possible to show that

(17)

where Definition 11 is used.
Since for construction, Proposition 1 applies,

and it is possible to see that the second term of the sum at the
right-hand side of (17) is larger than the third, and that the fourth
is larger than the fifth, and so on. This means that it is possible
to retain only the first term of the summation, and to write

(18)
We can now combine (15) and (18) to obtain

.
Fig. 1 plots for the third input and a generic outputin

a switch with input and output ports, versus different
values of arrival rates , when output is at maximum admis-
sible load: . Since guarantees stability,

indicates a lower bound to the value of speedup that guar-
antees stability. Note that is always smaller than 2, and
that it is minimum for the most balanced traffic condition, i.e.,
for .

Proof of Corollary 5: The algorithm for choosing at any
internal time slot the set of candidate queues, given the state
of the system of queues, , is the same as in RRD-SA. As
a consequence, the probability that a particular set

of candidate queues is selected by the inputs is the same



110 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 1, FEBRUARY 2001

Fig. 1. 4�4 switch using the RRD scheduling algorithm under uniform traffic
pattern: probabilityL that VOQq is served in an internal time slot once
selected versus possible values of ratesr , r ; r = 0:01 andr = 1 �

r �r �r . Dashed lines show the admissible region for ratesr andr .

for both policies. Given a set of candidate queues selected
by inputs, the output contention resolution policy implemented
by LQRD-SA guarantees that

. As a consequence

Hence, for Theorem 4, the system is strongly stable.
Proof of Corollary 6: Note that, given , ELQRD-SA

guarantees that the size of the sets ofnonemptycandidate queues
is maximal (i.e., the size of all the sets of candidate queues is
equal to the number of inputs with at least one nonempty queue).
For each nonempty queue, the probability of being selected as
candidate under ELQRD-SA is therefore not smaller than under
LQRD-SA.

Indeed, it is possible to perfectly emulate the statistical distri-
bution of candidate sets of ELQRD-SA starting from the candi-
date sets generated with LQRD-SA and completing each non-
maximal set to obtain a maximal one. To prove it, it is suffi-
cient to build the relation between the sets of candidate
queues obtained with policies LQRD-SA and ELQRD-SA for
each queue configuration :

• each maximal candidate set is put
in correspondence with set , so that

;
• each nonmaximal candidate set is put in correspon-

dence with all sets , such that .
With each pair of sets ( ), we associate the prob-

ability that is obtained according to
ELQRD-SA, given that some inputs have already chosen their
candidate queue ( is the nonempty set of candidate queues
that have been already chosen by some inputs). Note that

.
It is possible to see that, starting from the candidate sets

generated with LQRD-SA, and completing each nonmaximal
set by applying (i.e., choosing a set in correspon-
dence with according to the associated probability distri-
bution), the statistical distribution of the ELQRD-SA candidate
sets is perfectly emulated.

Given a set of nonempty candidate queues selected
by inputs, the output contention resolution algorithm im-
plemented at the outputs for both policies guarantees that

. Thus,
given two sets of candidate queues and such that

, then .
As a consequence, Theorem 4 applies and the system of

queues is proven to be strongly stable.

VII. QUEUE-LENGTH-DRIVEN SCHEDULING ALGORITHMS

In this section we prove that a simple scheduling algorithm
that determines the set of noncontending cells to be transferred
from inputs to outputs in each internal time slot with a random
selection based on queue lengths is stable for any speed-up value
greater than 2. Before reaching this point, however, we need
to introduce some definitions and to derive some preliminary
results.

Definition 12: Let be the set of such that

(19)

Definition 13: Given a vector , , let be
the maximal vector parallel to in , i.e., ,

Definition 14: Given a vector , , define

Definition 15: Let be the symmetric matrix associated
with the projection operator along the direction of, i.e.

Indeed, for and .
The following theorem states that, if the vector of the average

departure rates from the VOQ is parallel to the queue-
length vector , and longer than , then the CIOQS is stable.

Theorem 6: In a CIOQS with VOQ at each input, a sched-
uling algorithm such that is strongly stable
for each .

Moreover, if the average departure rate vector is pro-
portional to the maximal queue-length vector incremented by a
positivevector , then the CIOQS is stable:

Theorem 7: In an CIOQS with VOQ at each input, a sched-
uling algorithm such that with

is strongly stable for each .
Note that Theorem 6 does not imply Theorem 7, since the

choice of affects the evolution of .
The following scheduling algorithm is similar to RRD, but

the selection rates are now derived from queue lengths, rather
than average arrival rates:
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Definition 16: A CIOQS adopts alongest-queue-driven
(LQD) scheduling algorithm if the selection of the set of
noncontending cells to be transferred from inputs to outputs at
each internal time slot is performed according to the following
algorithm.

1. At each internal time slot , the th
input, within its own VOQ structure,
chooses queue with a probability pro-
portional to the queue-length . The
probability 5 of selecting queue is 0
if , and

otherwise. With probability ,
no queue in the VOQ is chosen for cell
transfer. Queue is the candidate of
input to attempt a cell transfer (to-
ward output ).

2. Among the contending candidate input
queues storing cells directed to the
same output, only one is enabled to
transfer its cell. The choice among
contending candidate input queues is
performed at random, according to a uni-
form distribution; i.e., if there are
candidates for the same output , only
one input receives a transfer grant, and
the probability of receiving the grant
is for each input queue.

Theorem 8: Under admissible load conditions, a CIOQS
adopting a LQD-SA is strongly stable for any speed-up .

VIII. PROOFS FORSECTION VII

Proof of Theorem 6:Consider the positive matrix
, where and is the

vector of the average cell arrival rates ; it is easy to prove
that is positive (semi)definite. By defining as
the Lyapunov function for the CIOQS, we prove that for some

, , there exists such that

Hence Corollary 5 applies, and the CIOQS is strongly stable.
Indeed, for growing to infinity, and using (1)

5Note that this probability is directly dependent
from the time instant n now.

Note that the domain of , for a given , is the sur-
face of the unit sphere in , and that , for a given

, is linear in , hence

(20)

If , then is negative for all that are not
parallel to , since , while it is
null for parallel to .

In order to prove stability, it is necessary to find a value of
for which is smaller than a finite negative constant
on the whole domain of .

Note that , performed for parallel to
, is strictly positive. As a consequence, there exists a

-sphere around where such derivative remains
larger than a finite positive constant. This implies that, in each
point inside the -sphere, for any , is
smaller than a finite negative constant. Outside the-sphere,
the domain of is closed, hence the maximum
value exists; moreover, being away from ,

is strictly negative for .
For continuity, is negative for suf-

ficiently small. As a consequence, for , is
smaller than a finite negative constant for all values of.

Proof of Theorem 7:Since , two cases are pos-
sible.

• ; in this case the stability of the
algorithm can be easily proved by using
in the previous proof.

• is not in due to negative components;
in this case it is possible to split , so
that , and (containing
all negative components) is orthogonal to .
Also in this case, the algorithm can be proved stable by
using in the previous proof (note that

, because of the orthogonality between
and ).

Proof of Theorem 8:The average number of times that a
particular queue is selected as candidate in internal time slots
is , and by definition. Since matrix can be
viewed as a matrix of admissible rates loading the CIOQS, from
the proof of Theorem 5 the probability that a queue is served
once selected in each internal time slot is not less than 1/2. As a
consequence, using speed-up , we have

, with , and where accounts for
the extra service due to the fact that . Vector is
a function of , so that Theorem 7 does not directly apply.
Note that is indeed a function of (it does not depend on

), since is a function of .
Considering the evolution of the system we can write:

. Without
loss of generality, we assume . If instead

, arguments similar to those used in the proof
of Theorem 7 can be applied.
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The system of queues can be proved to be strongly stable by
using a time-variant Lyapunov function. Define

where is a real constant (as in the proof of Theorem
6), and is a function of that will be defined in the
sequel. According to Corollary 5, we need to prove that

By adding and subtracting we get

but, if takes only positive (nonnull) values, from The-
orem 7 follows that

since only the (symmetric positive definite) matrix appears
in the last inequality. Furthermore, we can choose function

such that

Indeed, if we assume that

where , we can write

Note that is defined in recursive form as long as
keeps greater than:

Since matrices are symmetric and positive definite, the
fraction at the right-hand side of the equation above is always
positive. Taking , it is possible to show that
remains strictly positive (even for ).

IX. DETERMINISTIC WEIGHTED SCHEDULING ALGORITHMS

Next, we apply the results obtained in the previous sections
to scheduling algorithms that were proposed in the literature for
input queueing switches.

Definition 17: A CIOQS adopts amaximum weight
matching (MWM) scheduling algorithm if the selection of
the set of noncontending cells to be transferred from inputs to
outputs at each internal time slot is performed according to the
MWM algorithm [8].

Let represent a weight vector at time, and let
be an admissible departure vector. The departure vector
produced by an MWM-SA is such that

.
If we set , where represents the state at time

of the system of queues of a CIOQS with VOQ at each input,
the departure vector produced by an MWM-SA is such that

.
In [5], using as Lyapunov function , it was

proved that, for any CIOQS adopting an MWM-SA with

for sufficiently large. As a consequence, due to Corol-
lary 3, the following result holds true.

Theorem 9: Under any admissible traffic pattern, a CIOQS
adopting an MWM-SA with weights equal to queue lengths is
strongly stable for any speed-up .

The algorithmic complexity required for the computation
of the MWM departure vector is quite large (algorithms are
known with asymptotic complexity , see [8]). This
severely limits the practical relevance of the stability result,
and has encouraged researchers to look for simpler policies to
approximate the MWM algorithm in input buffered switches
with speed-up . Note that none of the many heuristic
proposals that appeared in the literature was proven stable
under any admissible traffic pattern for speed-up , or
larger.

The following result indicates a way to design stable transfer
policies for switches with moderate speed-up, whose compu-
tational requirements can be arbitrarily constrained, at the ex-
pense of increased cell queueing delays and burstiness of the
cell transfers.

Corollary 7: Consider a CIOQS with speed-up. Assume
that a scheduling algorithm is found such that for some

, ,

for each vector . Given , a new scheduling algorithm
is defined, according to which is executed only once in each
external time slot, to select a set of noncontending cells, whose
transfer is enabled times, once in each of the internal time
slots comprised in the external time slot. Thus, up tocells can
be transferred from the selected queues in each external time
slot.

A CIOQS with speed-up adopting policy is strongly
stable under any admissible traffic pattern.
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Note that the previous result can be easily extended:
Corollary 8: Consider a CIOQS with speed-up. Assume

that a scheduling algorithm is found such that for some
,

for each vector . Given , and , a new scheduling
algorithm is defined, according to which is executed
only once every external time slots, to select a set of non-
contending cells, whose transfer is enabled times, in each
one of the internal time slots comprised between two suc-
cessive executions of the algorithm. A CIOQS with speed-up
adopting policy is strongly stable under any admissible
traffic pattern.

Consider a CIOQS with speed-up, and adopting a sched-
uling algorithm , which is executed at each internal time slot
to select a set of noncontending cells. Let , ,
be the departure vectors referring to theth internal time slot
corresponding to the th external time slot. Let be the
queue-length vectors referring to theth internal time slot cor-
responding to the th external time slot. Note that
and that , .

Corollary 9: A CIOQS with speed-up adopting policy
is strongly stable under any admissible traffic pattern if

where is the number of queues selected by bothand
MWM at the th internal time slot.

We next prove the stability of MWM algorithms.
Definition 18: A CIOQS adopts agreedy maximal weight

matching (GMWM) scheduling algorithm if the selection of
the set of noncontending cells to be transferred from inputs to
outputs at each internal time slot is performed according to the
following algorithm.

1. All queues within the whole VOQ
structure are initially enabled.

2. The longest enabled queue (say ) is
selected for cell transfer (ties are
broken with a uniform random choice).

3. All enabled queues with either
or are disabled.

4. If no enabled queues remain, then stop.
Else return to Step 2.

Theorem 10:A CIOQS implementing a GMWM-SA is
strongly stable for all .

X. PROOFS FORSECTION IX

Proof of Corollary 7: Let be the global depar-
ture vector, referring to one whole external time slot; theth
component of is ,
where is the th component of .

Let . Note that, by construc-
tion, the nonnull components of correspond to compo-

nents of referring to selected queues with size smaller than
; as a consequence, . Then

From the assumptions we have thus

For sufficiently large, so that
, we have and The-

orems 4 and 9 apply.
The proof of Corollary 8 is a straightforward generalization

of the proof above.
Proof of Corollary 9: For the sake of brevity, we report the

proof only for the case . The extension to larger values of
is straightforward.
From the assumptions we have

(21)

(22)

By definition .
Then

(23)

Considering that since
, and that from (22) and (23), we have

(24)

Finally, combining (21) and (24)

Comparing the departure vectors in external time slots, and
being the MWM-SA stable at , is strongly stable due
to Theorem 4.

Proof of Theorem 10:We show that
for each , where is the number

of queues from which a cell is transferred according to both
and , and prove stability according

to Corollary 8.
Note that the scalar product between a departure vector

and the vector equals the sum of the queue lengths over all
queues from which cells are transferred

Let be the set of queues selected for cell
transfer with MWM; let be the set of
queues selected with GMWM. Assume that

, otherwise the proof trivially follows, since
.
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If the cardinality of or is smaller
than , we can augment the two sets by adding some empty
queues, so that the augmented sets comprisenonconflicting
queues.

Let be the longest queue in .
If , we set

and .
Otherwise, select all queues in that conflict with

; the selection returns at most two queues: (con-
flicting with on input ), and (conflicting with

on output ).
By construction, the lengths of queues and

cannot exceed the length of queue . Thus, the sum of their
lengths is less or equal to twice the length of .

Set and
. Note

that can notcomprise queuesconflictingwith .
, the longest queue in , is considered next,

and the elimination of queues from continues as
long as the set is not empty. If aftersteps is
empty, then must contain only empty queues; in-
deed, suppose contains a nonempty queue, this im-
plies that at least one nonempty queue exists that does not con-
flict with any one of the queues in . This however
is not possible, since GMWM is a maximal size matching.

XI. M AXIMAL SIZE MATCHING SCHEDULING ALGORITHMS

In this section we considermaximal size matchingsched-
uling algorithms (MSM-SA). Many scheduling algorithms pro-
posed in the literature [13]–[16] fall in this class.

Definition 19: A CIOQS adopts an MSM-SA if the selection
of the set of noncontending cells to be transferred from inputs
to outputs at each internal time slot is performed according to
the MSM algorithm.

Consider any queue in the VOQ structure, that stores cells
at input directed to output. Recall that cells stored in com-
pete for inclusion in the set of noncontending cells generated by
the scheduler with cells stored in each queuewith and

with .
If is nonempty, the MSM algorithm generates a set of

noncontending cells that comprises at least one cell extracted
from (exactly one, if the cell is extracted
from ; possibly two, if one cell is extracted from a , ,
and one from a , ).

Definition 20: A CIOQS adopts afair scheduling algorithm
if the first two moments of the distribution of the time interval
between two consecutive services of any nonempty queue in the
VOQ structure are finite under any admissible traffic pattern.

In the next section we prove the following important result,
which was derived with different techniques also in [30], ap-
plying the methodology presented in [29].

Theorem 11:Under any admissible traffic pattern, a CIOQS
adopting an MSM-SA achieves 100% throughput for any
speed-up .

If the maximal size matching scheduling policy is fair, then
the queueing delay can be proved to be bounded, and then the
CIOQS is strongly stable:

Theorem 12:A CIOQS with speed-up 2 implementing a fair
MSM-SA is strongly stable under any admissible traffic pattern.

XII. PROOFS FORSECTION XI

The stability proof is logically subdivided in three parts:

1) In the first part of the proof, we define a queueing system
, and we prove its stability;

2) In the second part, we show how it is possible to infer,
from the stability of system , that a CIOQS imple-
menting an MSM-SA achieves 100% throughput, thus
proving Theorem 11;

3) In the third part, finally, we show how it is possible to
infer, from the stability of system , the strong stability
of all input queues in a CIOQS implementing a fair
MSM-SA, thus proving Theorem 12.

A. Part I

Consider a system of queuescomprising dis-
crete-time queues (each queue in corresponds to an input
queue of the CIOQS).

Customers arriving at the queues inbelong to two classes,
named and . Priority is given to the service of class
customers, i.e., whenever a class customer is in queue ,
no customer of class can be served at queue . However,
the server of queue is active only when at least one customer
of class is in queue . Let and denote the numbers
of customers of classes and , respectively, at time . The
vector contains the state information for the
queue at time . Similarly, the vector contains
the information about the departures from the queue in time.

Theorem 13:Each queue of system is strongly stable if:
i) the average number of class customers at is greater than
zero ( ), and ii) the average total number of arrivals
per slot at is less than one ( ), and iii) the
second moment of the total number of arrivals per slot atis
finite ( ).

Proof: Consider a generic queue of system . In the
following, we always refer to queue , and, in order to simplify
the notation, we omit the queue indices.

The vector contains the information about
the arrivals at the queue in slot. Since we assume that vectors

are statistically independent, the queue evolution process is
a DTMC, whose state at time is , and whose dynamic is
driven by

if and

if and

if
(25)

Given , consider the Lyapunov function

if

otherwise.
(26)

It is possible to find , , and
such that
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for , so that the system of queues is strongly stable
for Theorem 2.

Consider first , i.e., , and ;
in this case

Since the second moment of the distribution of the number of
arrivals per slot is finite, taking the limit for , we
obtain

for any .
Instead, for ,

since ,
is finite, and .

In addition, if the second moment of the number of arrivals
per slot is bounded, there exists ansuch that

As a consequence, queue is strongly stable for Theorem 2,
and since the proof holds for any queue in, the whole system
of queues is strongly stable.

It is possible to extend these results to arrival processes that
present some form of correlation (i.e., for which vectorsare
not independent). In this case the state definition for the Markov
chain must be augmented with additional state variables. The
extension is straightforward when these additional state vari-
ables take only a finite set of values, since they can be mapped
onto vectors of Corollary 1 and Theorem 2. For example, the
arrival processes at queues can be Markov modulated Bernoulli
processes. It is, however, necessary to guarantee that
is an admissible load vector for each state.

B. Part II

Let us correlate the arrival processes of the CIOQS and of the
system of queues studied in the previous subsection. Assume

that at time both the system of queues and the CIOQS
are empty.

If in the CIOQS a cell arrives at queue at time , then in
the system of queues at time:

• a class customer arrives at queue ;
• a class customer arrives at each queue ,

, , and a class customer ar-
rives at each queue , , .

The arrival of a class customer at queue corresponds to
the arrival of a cell at queue . The presence of a class
customer in queue corresponds to a delay, i.e., to aninternal
time slot in which no cell is transmitted from queue, due to
the transmission from a queue that is contending with. Then
the total number of arrivals at queue is

where .
Let be a function that is equal to 1 if the number of cells

in queue is greater than zero at time; otherwise.
The following results apply.

Theorem 14:Let be a time in which the queue is
empty. Then

(27)

Proof: First, observing that is the total
busy time in the interval , we have that

(28)

since no more than one customer can depart from queuein
each time slot, but no customer can leave the queue when only
class customers are present.

Second, considering queue of the CIOQS, we have

(29)

since, if , at least a cell departs from queues in.
As a consequence, comparing (28) and (29), we derive (27).
Corollary 10:

Proof: The second inequality holds because systemis
described by an ergodic DTMC, so that

being the stationary probability that the queue is empty.
For what concerns the first inequality note that, by Theorem 14,
there exists a sequence of timessuch that
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where is the set of times in which is empty. Since system
, being strongly stable, is described by an ergodic DTMC,

. As a consequence

But, being sequence convergent, it con-
verges to the same limit of all its subsequences.

Corollary 10 implies that there exists a infinite setof time
instants in which queue is empty (note that we have not yet
proved stability of the CIOQS, hence of the ergodicity of the
underlying DTMC), i.e.:

Corollary 11: Let . Then

Proof: By contradiction, let us suppose that
. Then

But this contradicts Corollary 10.
Finally, we can prove Theorem 11.

Proof: Let us consider a queue . We have to prove that

Consider the subsequence . By definition,
, and

The Cesaro sum is convergent; then is
convergent:

A converging sequence converges to the same limit of any
subsequence. Thus

and the system achieves 100% throughput.

C. Part III

Let us correlate in the following way the arrival processes of
the CIOQS and of the system of queuesstudied in the previous
section. If a cell arrives at queue at time , then at time

1) A class customer arrives at queue .
2) For each queue , with either or ,

a class customer arrives only if cell leaves the
CIOQS before any cell currently stored in the CIOQS
queue .

3) Queue receives a batch of class customers, whose
size is equal to the number of cells stored in queues

, with either or , and leaving the CIOQS
before cell , but after any other cell stored in .

The presence of a class customer in queue corresponds
to the presence of a cell in queue. The presence of a class

customer in queue corresponds to a delay, i.e., to anin-
ternal time slot in which no cell is transmitted from queue.
System is work conserving, in the sense that a customer, if
present, is served at each internal time slot. Note that this is true
only under the particular traffic pattern that we consider, which
allows class customers to be in waiting lines only when also
at least one class customer is present. Instead, the VOQ’s of
the CIOQS are not work conserving, in the sense that no waiting
customer may be served in a slot, due to input or output con-
tention. Nevertheless, the flow of class customers in system

exactly mimics the flow of cells in the CIOQS running a fair
MSM scheduling algorithm.

Queue receives customers 1) when a cell arrives at queue
, and 2) possibly when a cell arrives at a queue , with

either , or (i.e., a cell arriving at the same input
port, or directed to the same output port). In the former case a
class customer enters , possibly together with a batch of
class customers. In the latter case one classcustomer may
arrive at queue .

Note that thebatchofclass customers isdue toclass cus-
tomers (i.e., cells in the CIOQS) stored at other queues, and that
a customer arrived at another queue at most generates (either
upon arrival, or in a later batch) one customer at queue .

We can therefore state the following theorem.
Theorem 15:The total average arrival rate of class and

class customers at queue does not exceed the sum of the
arrival rates at queues , with and/or (including
queue ).

Proof: By construction, at most one class customer ar-
rives at queue for each class customer arriving or queued
at queue , with either or . Since cus-
tomers in system correspond to cells in the CIOQS, at most
one customer (either class or class ) arrives at queue
for each cell arrival at a queue belonging to inputor directed
to output .

Obviously, the following property holds.
Proposition 2: The number of cells stored in any queue

never exceeds the total number of customers (of classesand
) stored in .
Theorem 15 implies that the average arrival rate of customers

at each queue is less than 2 customers per external slot if the
traffic loading the corresponding CIOQS system is admissible.



LEONARDI et al.: ON THE STABILITY OF INPUT-QUEUED SWITCHES WITH SPEED-UP 117

For what regards the second moment of the arrival process at
system , the following property holds.

Theorem 16: If the CIOQS implements a fair MSM policy
(according to Definitions 20 and 19), then the second moment
of the size of the batch entering queue is finite.

Proof: Any batch contains only as many customers as the
number of cells stored in , with either or

, that leave the CIOQS before , but after any other cell
stored in , i.e., between two consecutive services of. Since
the policy is fair, the first two moments of the time between
two consecutive services is finite, and thus also the first two
moments of the batch size are finite.

Theorem 12 holds as a consequence of the previous results.
Proof of Theorem 12:Consider the system of queues,

and assume that the rate at which customers are served in system
is equal to the internal CIOQS rate, i.e., to twice the external

cell rate. Because of Theorem 15, the average total number of
arrivals per internal slot (considering both classesand ) at
any queue is less than 1, under any admissible traffic pattern.
Furthermore, because of Theorem 16, the second moment of the
total number of arrivals at queue is finite.

As a consequence, the system of queuesis strongly stable
due to Theorem 13.

Since we have seen that each queue in the VOQ structure
cannot be longer than the corresponding queue in the system
of queues , also the CIOQS must be strongly stable.

XIII. C ONCLUSION

In this paper we computed stability conditions for several
scheduling algorithms used in combined input/output queueing
switch architectures. A formal, analytical approach, mainly
based upon Lyapunov functions, was used to derive the internal
switch speed-up needed to grant stability to vast classes of
scheduling algorithms.

Our novel results show that an internal speed-up equal to two
permits strong stability to most algorithms, when virtual output
queueing is implemented, and the policy to select the set of
noncontending data units avoids head-of-the-line blocking phe-
nomena.

The main results are Theorems 5 and 8, referring to a random
selection of the set of noncontending cells based upon input
rates or queue lengths, Theorem 10, referring to greedy max-
imal weight matching, and Theorems 11 and 12, referring to
maximal size matchings.

These results provide interesting inputs to the implementation
of the high-performance switching architectures that are neces-
sary in the near future to support the exponentially increasing
traffic of the Internet.
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