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Abstract—We consider cell-based switch and router architec- uling algorithm} which operates on a (possibly partial) knowl-
tures whose internal switching matrix does not provide enough edge of the state of input queues. This means that control infor-
speed to avoid input buffering. These architectures require a sched- mation must be exchanged among line cards, either through an

uling algorithm to select at each slot a subset of input buffered cells o L ..
which can be transferred toward output ports. In this paper, we additional data path or through the switching fabric itself, and

propose several classes of scheduling algorithms whose stabilitythat intelligence and computational complexity must be devoted

properties are studied using analytical techniques mainly based to the scheduling algorithm, either at a centralized scheduler, or

upon Lyapunov functions. Original stability conditions are alsode-  at the line cards, in a distributed manner.

rived for schedul_lng algorithms that are being used today in high- The problem faced by the scheduling algorithm can be

performance switch and router architectures. . . .
formalized as the classical graph theory problem of maximum

Index Terms—nput buffered switches, Lyapunov methods, sjze or maximum weight matching on the bipartite graph

scheduling algorithm, stability. in which nodes represent input and output ports, and edges

represent cells to be switched. The optimal solution to this
|. INTRODUCTION problem is known, but complexity is too large for practical

. implementations [8]. Several scheduling algorithms for 1Q cell
NUMBER of high-performance IP rout_ers (for examplesmtches were proposed and compared in the recent literature
the CISCO 12000 [1], the Lucent Cajun [2] family, or, . : :
the Nortel lar TSRA5000 3 built d fast ILS], [9]-[12], [14]-[18]. They usually aim amaximal size
€ Nortel vVersaiar [3]) are built around fast ce or weight matching, which are sub-optimal solution of the

based switching fabrics. The design of these high—performar}%%ximum size/weight matching at lower complexity, but were

routers geperally does not adopt the classical output queue Fdwn (using simulation) to provide performances very close
(OQ) architecture (where cells are stored at the output of the those of OQ architectures at reduced complexity. They

switching fabric), preferring either input queueing (IQ) or COMare however still relatively demanding in terms of computing

bined input/output queueing (CIOQ) structures. The reason Bwer and control bandwidth in switches with a large number
that, in OQ, both the switching fabric and the output (and po 7 input/output ports

sibly input) queues in line cards must operate at a speed equ he complexity of the scheduling algorithm can be partly re-

tp the sum of the rates of all i_nput lines; since this speed 9r%gced [19] when the switching fabric, as well as the input and
linearly with the number of switch ports, the OQ approach s Ir"E)'utput memories, operate with a moderate speed-up with respect

practical for large _switc_hes. I_nstead, niQ s_che_mes, aI_I the €O the data rate of input/output lines. In this case, buffering is
ponents of the switch (input interfaces, switching fabric, outp\,_l quired at outputs as well as inputs, and the term “combined

interfaces) can.operate ata datg rate which is compatibl_e wif ut/output queueing” (CIOQ) is used. Obviously, when the
the data rate ofinput and outputlines, and does not grow with ¢ eed-up is such that the internal switch bandwidth equals the

switch size. The traditional performance penalty of IQ archlte%hm of the data rates on input lines, input buffers are useless.

tures is due to head-of-the-line blocking in the case of a singley;reover, in [19], a speed-up equal to 2 in CIOQ switches,

gueue per input interface [4], but can be largely reduced by Vik

. o ."Independent of the number of switch ports, was shown to be
tual output queueing (VOQ) (also called destination queueing) .+ exactly emulate an OQ architecture, at the expense

schemes [5], which organize input buffers in each line card Intoo?quite complex scheduling algorithms, whose implementation

set of queues where cells awaiting access to the switching faba{bcpears to be problematic. A similar result was proved in 120]

are stor_ed_accor_dmg to th_e|r destlnat|_on out_put cards. while in [21], [22] the authors showed that a limited speed-up is
A major issue in the design of IQ switches is that the access, t&

S ; fficient to emulate work-conserving switches.
the switching fabric must be controlled by some form of sched- 9

IThe term “scheduling algorithm” for switching architectures is used in the
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In previous papers [23], [24], we proved that simpler sched- Definition 1: A system of queues achieved00%
uling algorithms, whose implementation is surely feasibléhroughput if lim,, e (X /n) = limy,—oo(1/n) Yoio(Ai —
provide the same throughput performance of OQ with speed-fip) = 0 with probability 1.
equal to 2 (although the behavior of an OQ architecture isDefinition 2; A system of queues iweakly stableif, for
not exactly emulated), and that a wide class of Maximaverye > 0, there exist®3 > 0 such thatim,,_,., Pr{||X,,|| >
Size Matching (MSM) scheduling algorithms (comprising3} < ¢ (wherePr{E'} is the probability of event).
well-known scheduling algorithms, such as i-SLIP [9], [11] and Definition 3: A system of queues istrongly stable if
2DRR [16]), whose implementation is quite simple, also prdim,, ... sup E[|| X,]|] < .
vides the same throughput performance of OQ with speed-ufNote that strong stability implies weak stability, and that
equal to 2. These results provide a solid theoretical backgroundak stability implies 100% throughput. Indeed, the 100%
to manufacturers of high-speed switches and routers that will theoughput property allows queue lengths to indefinitely grow
a major ingredient of future telecommunication infrastructurewith sub-linear rate, while the weak stability property entails

In this paper we present an extended and generalized verdivat the servers in the system of queues are able to process the
of these stability results, proposing and studying simple classelsole offered load, but the delay experienced by customers
of novel scheduling algorithms as well as proving the stability @an be unbounded. Strong stability implies, in addition, the
well known scheduling algorithms that are being used today limundedness of the average delay of customers.
high-performance switch and router architectures. After intro- We assume that the process describing the evolution of the
ducing some definitions and preliminary results in Section Isystem of queues is an irreducible discrete-time Markov chain
and our notation and modeling assumptions in Section Ill, WBTMC), whose state vector at timeis® Y,, = (X,,, K,,),
provide stability results for rate-driven scheduling algorithms, € N™ X, € NV, K, € NY, andM = N + N'. Y,
in Section IV, for queue-length-driven scheduling algorithms iis the combination of vectaX,, and a vectors,, of N’ integer
Section V, for deterministic weighted scheduling algorithms iparameters. Lell be the state space of the DTMC, obtained as
Section VI, and for maximal size matching scheduling alg@ subset of the Cartesian product of the state spheef X,
rithms in Section VII. Finally, we conclude the paper with Seand the state spadé, of K.
tion VIII. From definition 2 we can immediately see that if all states

In order to simplify the task of the reader, sections are d¥, are positive recurrent, the system of queues is weakly stable;
vided into two parts: in the first part we state our definitiondjowever, the converse is generally not true, since queue lengths
theorems and corollaries; in the second part we provide proatn remain finite even if the states of the DTMC are not positive

of theorems and corollaries. recurrent due to instability in the sequence of paramghér}.
Note that most systems of discrete-time queues of interest can
[I. DEFINITIONS AND PRELIMINARY RESULTS be described with models that fall in the DTMC class.

: : - - o The following general criterion for the (weak) stability of sys-
In this section we define three different criteria for the sta- . ) : .
s that can be described with a DTMC is therefore useful in

bility of systems of discrete-time queues, we recall some baé?

results that are useful to prove stability, and we somewhat extetHS design of scheduling algorithms. This theorem is a straight-

and generalize those, so as to be able to compare two differ]c ard extension of Foster's Criterion; see [25]-{27].
systems of queues, and to derive the conditions that allow t|
stability of one system to be inferred from the stability of th
other.

Given a system ofV discrete-time queues of infinite capac
ities, let X,, be the row vector of queue lengths at timgi.e.,
X, = (2%, 22, ..., 2)), wherez!, is the number of customers

in queue: at timen.
iEachi queue Ier:gth evolution is describedaty,, = x;, + then all states of the DTMC are positive recurrent and the system
ay, — di, wherea! represents the number of customers ar-

. S ; of queues is weakly stable.

rived at queueé in time interval(n, n + 1], andd’, represents L .
ot ; Note that an explicit dependence of the Lyapunov function

the number of customers departed from quéue time in-

on the time index is allowed, so that it is possible to explicitly

he heorem 1:Given a system of queues whose evolution is
escribed by a DTMC with state vectb, € N™ if a lower
ounded functiofV (Y,,), called Lyapunov functiort/: N¥ —

R can be found such tha&[V (Y, +1)|Y,] < oo VY, and there
existe € RT andB € R* such that' ||Y,,|| > B

EV (Y1) = V(Y)[Ya] < —¢ )

t _ 1 2 N
terval (n, n + 1]. Letz}, = 0. Let An = (ar, az, ..., a;) write V(Y,) = V(Y,, n).
be the vector of the numbers of arrivals at thequeues, and If the state spacé& of the DTMC is a subset of the Cartesian
D, = (d, d%, ..., dY) be the vector of the numbers of de- P

rProduct of the denumerable state spate and afinite state
spaceH g, the stability criterion can be slightly modified, since
the stability of the system can be inferred only from the queue-
Xpi1 =X, + A, — D,. (1) length state vectaX,.
Corollary 1: Given a system of queues whose evolution is
We assume that vectors, are independent and identically disdescribed by a DTMC with state vectd}, € N*, and whose

tributed, although this constraint can be relaxed in part. state spacé is a subset of the Cartesian product of a denumer-
Given a vectorX = (z1, z2, ..., £x ), we indicate with

partures from theV queues. With this notation, the equatio
that describes the evolution of the system of queues is

. . K 3In this papeiN denotes the set of nonnegative integBrslenotes the set of
X 2 .
||X|| its Euclidean norm{| X || = /> ";_, ;. real numbers, an* denotes the set of nonnegative real numbers.
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able state spacK x and a finite state spadéy, then, ifalower  The following Theorem 4 is particularly important for the rest
bounded functio®’ (X,,), called Lyapunov functiori/: N —  of the paper, since it will allow us to compare different sched-
R can be found such th&[V (X,,+1)|Y,] < o0 VY, and there uling policies from the point of view of stability.

existe € RT andB € R* suchthav'Y,,: || X,|| > B Theorem 4: Consider two systems of queugsandsS,, each
one comprisingV. queues. Let the arrival processes at each
queue for both systems be statistically identical. ’&4; .,

then all states of the DTMC are positive recurrent. Ds1,n, @ndXsz,n, Ds2, 5, be the queue-length and departure

In this case, the system of discrete-time queues is wealf§ctors 0fS1 and.S; at timen, respictively. ﬁssume that (6)
stable iff all states of the DTMC are positive recurrent. holds forX'sy, », and there exist € R™, B € R™ such that for

In the remainder of this paper we restrict our analysis to thetst.=ll > B and||Xsz .| > B
class of systems of queues for which Corollary 1 applies. T T
) : X . E[Ds; X — Dgs X Ysi.n=Ys2 n] < —¢ (8
To extend the previous result, we obtain the following crite- [Ds1,nXs1,n = Dsz,n Xzl V1, san] <= (8)
rion for strongstability: ~ then systenS, is strongly stable and all the polynomial mo-
Theorem 2: Given a system of queues whose evolution is dgnents of its queue-length distribution are finite.
scribed by a DTMC with state vectdf, € N™, and whose
state spacé! is a subset of the Cartesian product of a denumer- . PROOFS FORSECTION Il
able state spackH x and a finite state spadé, then, if a lower . )
bounded functiot’ (X,,), called Lyapunov functior;: N~ — Proof of Theorem 2:Since the assumptions of Theorem 1

R can be found such tha[V (X,.11)|Y,] < oc VY, and there &€ satisfied, every state of the DTMC is positive recurrent and
existe € Rt andB € R* such that/'Y,,: || X,.|| > B the DTMC is weakly stable. In addition, to prove that the system

is strongly stable, we shall show tHat,, ..., sup E[|| X, ]|]] <
EV(Xni1) = V(X)[Ya] < =] Xl (4) oo

ElV(Xpp1) = V(Xn)[Va] < —¢ ®)

Let Hp be the set of values taken by, for which ||.X,, || <

then the system of queues i_S strqngly Sta‘?'e- _ B [where (4) does not apply]. It is easy to prove tltag is a
A class of Lyapunov functions is of particular interest: compact set. Outside this compact set, (4) holds, i.e.
Corollary 2: Given asystem of queues as in Theorem 2, then, ' '

if there exist a symmetric copositivenatrix W € RV*V and E[V(Xpq1) = VXYl < —€|| Xl
two positive real numberse RT andB € R, such that, given
the functionV(X,,) = X, WXL VY,: ||X.| > B itholds Considering allt’,’s that do not belong té{ z, we obtain

EV (X)) = V(X)) Ya] < —¢f| Xl ()  EV(Xny1) = V(Xn)|[Ya € Hp] < —eE[|| X,||[Y, & Hp].

then the system of queues is strongly stable. In addition, all thestead, forY,, € Hg, beingHp a compact set
polynomial moments of the queue-length distribution are finite.
This is a rephrasing of the results presented in [28, Sect. IV]. E[V(Xp41)|Yn € Hg) < M < 0
In particular, the identity matriX is a symmetric positive ] )
semidefinite matrix, hence a copositive matrix; thus itis possibfghereM is the maximum value taken by[V(X,,11)[Y,] for
to state the following Y, inHp. _ _ _
Corollary 3: Given a system of queues as in Theorem 2, then, BY cOmbining the two previous expressions, we obtain
: i + + .
if there exists: € R™, B € R* such that' Y;,: || X,|| > B E[V(Xi1)]

EXnp1 X0 — X XTY,] < —€|| Xl (6) < MPr{Y, € Hg} +Pr{Y, ¢ Hg}

then the system of queues is strongly stable, and all the polyno- ABWV(Xn)|Yn & Hp] — B[ Xn|[[Yn & Hpl}
mial moments of the queue-length distribution are finite. <M+ E[V(X,)] — eE[|| X,||] + Mo.

A system of discrete-time queues is stable if all its queues
are stable; the standard approach to prove stability in queue Bl
systems is based on checking that the average number of arrigégl X [[[Yn € Hpl} Pr{Y, € Hg}. Note that/, is finite,
when the server is busy is smaller than the average numbeP§f94» @ compact set. _
departures. This formulation is provided by the next theorem.BY Summing over alh from 0 to N — 1, we obtain

is a constant such that, > {-E[V(X,)|Y, € Hg] +

Its proof is given in terms of the Lyapunov function because it fo—1
is convenient for the extension to more complex setups that Wey (X v, )] < NoM + E[V(X,)] -« Z E[||X,0]|] + NoMo.
shall consider later in this paper. =0

Theorem 3: Consider a systems of queues composed/ of

queues. If there existse RT andB € R* such that Thus, for anyNo, we can write

i i\ Rt
Bl(al, — dy)|ef, > 0] < O 3 B
Vi=1, ..., N then the system of queues is strongly stable. ¢ n=0

1 1
4An N x N matrixQ is copositive ifXQXT > 0V X € RtV <M+ Fo E[V (Xo)] - Fo E[V(Xn,)] + Mo.
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E[V(Xy,)] is lower bounded by definition; assume For systemS, beingYs; = Ys2, henceXs; = Xso, and

E[V(Xn,)] > Ko. Hence being E[As1, ] = E[As2, ], from (8) for || Xsz »|| > B we
get
Ky T T
N Z (1l < M + < E[V(Xo)] -t M. i E[X 52041 X52 n11 — X520 X5 o [Vs2,0]

X s2,n]l—00 ||X52,'n,||

For Ny — oo, being E[V (X,)] and Ky, finite, we can write < lim 2E[(As1n — Ds1,n) X3 11 Ys1,n]
No— (RIS | X 51,0l
N Z 11Xl < M + Mo. < e

Corollary 3 applies to systeri2. [ ]

Hencelimy, oo (1/No) 37° ! E[||X.,.|]] is bounded. Since
the DTMC Y,, has positive recurrent states, there exists
lim, . E[||X,]|]]. Furthermore, if the sequendg[||.X,.|[] is We consider CIOQ cell-based switches withinput ports
convergent, the sequenég/n) > '—; E[||X;||]] converges to and P output ports, all at the same cell rate (and we call
the same limit (being the Cesaro sum) them P x P CIOQS). The switching fabric is assumed to be
i nonblocking and bufferless, i.e., cells can only be stored at
1 the switch input and/or output ports. At each input port, cells
hm EfllXa = nlgrio_ Z (0. are stored according to a VOQ policy: one separate queue is
=0 maintained for each output port. Thus, the total number of
But the right-hand side was seen to be bounded; henggeues in the switch i&/ = P2. Let ¢;; be the queue at input
limy,— o0 E[| Xn][] < occ. B porti storing cells directed to output pojt
Proof of Theorem 3:Starting from (6) we can write Although the internal switch speedup can in general be ob-
ElXoy 1 X7, — X, XT|Y,] tained in several domains (time, space, wavelength, etc.), we as-
ntltntl netn S sume to operate in the time domain, and we say that the CIOQS
= E[2(A, — D)X + (An — Do)(An — D)TIY,]. achieves speed-u§ when the cell transfer rate through the
switching fabric isS times faster with respect to the rate of ex-
ternal input/output lines. Note that this requires the mateof
input queuesis well as the rateto output queuet® beS times

IV. NOTATION AND MODELING ASSUMPTIONS

For||Y,|| (and||X,]|) growing to infinity, since the number of
arrivals and departures in time intervals bounded, we have

E[(A, — D,)(A, — D.)T|Y,] the external input/output lines rate.
X0 [0 1%l =0. We callexternal tw_ne slothe tlme_z needed to trarysmﬂ a gell at
the data rate of the input/output lines. Tingernal time slofts,
As a consequence instead, the time needed to transmit a cell at the data rate of the
_ E[Xp1 XTI, — X, XT|Y,] swit.ching fapric. The external time sIotEtime_s longer than
||X£1ﬁri y X the internal time slot. Let;; be the average arrival rate of cells

- at queusy;; in cells/external slot.
— lim 2E[(An — D)X, [Yn] Definition 4: The traffic pattern loading a CIOQS is admis-
I Xz ]| —o0 (| Xl sible if for each input port and each output port the total arrival
rates in cells/external slot are less than 1, that is

and from (7) we have

E[X, 1 X | - X, XT|v,] max xj, 7’5“=Z7’U<1 1=1,2, ..., P
lim T nt — <= < —¢” ;
[ Xl Xl
Thus, for someB € R, ¢ € RT, || X,.|| > B o Z“J <1l j=12 ..., P 9)

T T
EXn 1 X1 — Xn X [Va] < —ef| Xan . During each mternal time slot, some cells may be transferred

] ;
from input queues to output ports. The set of cells transferred

Proof of Theorem 4:If (6) holds forXs; _,,, then for some

B, € R, c € RT ’ during one internal time slot must satisfy two constraints: i) at
’ each internal time slot, at each input, at most one cell can be
E[Xs1, 041 X3 p1 — Xs1,n X8 2|Ys1, ] extracted from the VOQ structure, and ii) at each internal time
< —||Xs1. ]l V|| Xs1.n|| > B slot, a.t r_npst one cell can be transferred toward each olutput.
Definition 5: A set of cells extracted from queugs is a
But, as shown in the proof of Theorem 3, setB = {b;; } of noncontending cells (also called a switching
. T N T matrix) if
. E[‘X517"/+1‘X51,n+1 - ‘XSL"/‘XSI,N,|YSL"] r r
lim
[BEE [ Xs1,nl >biy<1 Viooand > b <1 Vi (10)

- 1 ZE[(ASI,n - DSl,n)ngl’n”YSl,n] <
N ||Xs1?fﬁ—>oo 1 X 51l “ whereb;; is the number of cells extracted frog.
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In a CIOQS with speed-up, a set of noncontending cells Corollary 4: Under any admissiblaniformload, a CIOQS
can be transferred from input queues to output ports during eaatopting a RRD-SA is strongly stable for any speedsup-
internal time slot, so that sets of noncontending cells can be /(1 — (1 — (1/P))"), and forP — o, i.e., for switches with

transferred during each external time slot. very large number of ports, a speedAip- ¢/(e—1) guarantees
the strong stability of the system.
V. RATE-DRIVEN SCHEDULING ALGORITHMS If we use queue lengths (instead of probabilities) to break

. . . . . the ties among the contending candidates, we obtain a different
In this section we consider very simple scheduling alg%—Chedulin algorithm
rithms, which determine the set of noncontending cells that aré 99 y

transferred from input queues to output ports in each inter lDeflnmon 7: A CIOQS adopts fongest queue rate-driven

. . . QRD) scheduling algorithm if the selection of cells to be
time slot with a random selection based on the values of the . . .

. - transferred from inputs to outputs is performed according to the
average arrival rates;; of cells at queues;;, measured in

cells/external slot. Let following algorithm:

pij = 1. (As in Definition 6)

. 2. Among the contending candidate input

0 if max Z%’v ZTU -0 queues storing cells directed to the
5 ; same oqtput, only one among .the longest
queues is enabled to transfer its cell.

otherwise. Ties are broken with a uniform random
choice.

Tij

max ZT”’, ZT”’
’ ‘ Corollary 5: Under any admissible load, a CIOQS adopting
From (9), we obtairp;; > r;;, and a LQRD-SA is strongly stable for any speed-$ip> 2.
» To improve the performance of the scheduling algorithm, we
. can consider only the set of not-empty queues:
pi= Zp” s i=1.. P Definition 8: A CIOQS adopts aenhanced longest queue
=t rate-driven (ELQRD) scheduling algorithm if the selection of

Definition 6: A CIOQS adopts arandom rate-driven cells to be transferred from inputs to outputs is performed ac-
(RRD) scheduling algorithm (SA) if the selection of the set afording to the following algorithm:
noncontending cells to be transferred from inputs to outputs at

\

each internal time slot is performed according to the following. At each internal time slot, the ith
algorithm: input, within its own VOQ structure,
chooses a nonempty queue ¢;; with a prob-

1. At each internal time slot, the ith ability proportional to rij. Queue g;; s
input, within its own VOQ structure, the “candidate” of input i to gttempt a
chooses queue ¢;; with probability Pij; cell transfer (toward output J)-
with probability (1 — p) > 0, no queue 2 (As in Definition 7).
in the VOQ is chosen for cell transfer.

Queue ¢;; is the “candidate” of input Corollary 6: Under any admissible load, a CIOQS adopting
i to attempt a cell transfer (toward a ELQRD-SA is strongly stable for any speed-fip> 2.
output 7).

2. Among the contending candidate input VI. PROOFS FORSECTION V
queues storing cells directed to the To prove the theorems presented in Section V, we first have
same output, only one is enabled to to derive some preliminary results. Ldtbe a finite set of non-
transfer its cell. The choice among con- negative real numbers;, such that the sum of all elements in
tending candidate input queues is per- A is not greater than one; let al$é = |A| be the number of
fqrm.ed .at .re.mdor.n, according to a uniform elements of4, i.e., A = {a; € R+, E]{\’:l a; <1V,
d!str|but|on, i.e., if there are . k can- Let ol be a subset oft such thafa™| = k, 0 < k < N.
didates for the same output J, only one Let ol = @. Let Ay be the set of all possible subset®! of
input receives a transfer grant, and the Aie Ay ={aM C A o] =k 0 <k < N} Itis easy
probability of receiving the grant is to see thatA,| = (}). Let24 denote the power set of, i.e.,
1/k for each contending candidate input 24 = [A}N,.
queue. Definition 9: Givena C A, let f(«) be a functior2* — R

such thatf(a) = ], a: let f(0) = 1.
Theorem 5: Under any admissible load, a CIOQS adopting Definition 10: Givena C A, let f(«) be afunctior2* — R,
a RRD-SA is strongly stable for any speed-tip> 2. such thatf(«) = [co(l—a); let £(0) = 1.
Considering a CIOQS under a uniform traffic load, we have: Definition 11: Let Fi.(A) = 3 e, f(al*).
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Proposition 1: For each seti Let A be the set of alp;,. exceptp;,, i.e., A = {p;., 1 =
1 , P,i #t},|Al = P — 1. Then, recalling Definitions 9
Fry1(4) < ) (A VYE<N. and 10,Q;, = p, Ly, Where

Proof: By definition
Fri1(A) = Z f(a[k-i—ll)

ol e A, 4y

=Y gy 0 1 ()7 ()

is the probability of serving queug,. once selected.

_ 1 Z 7 [k+11) _ Using a speed-up factqr eql_JaI £ the average number qf
=108 times a cell leaves any given input queue in an external time
= o EA"“ slot is equal toS times Q..

1 ‘ In order to prove that[a!]] < E[dY] — ¢ < E[d!"] (note
=1 > Zf ( [Hl}) - (1) thatE[a'"] and E[d"] are numbers: they do not dependon
alk+tled, , =0 for speed-up equal to or greater than 2, it is sufficient to show
terms in(k + 1)/(N — gltatQt,, > (1/2)E[a!"] = (1/2)ry,., i.e., Q. /Elal"] > 1/2,
, T
Sincepy. >

We can group all thék + 1)(, 7))
k)(kﬂ\rrl) = () subsums, each one comprisiivg- £ different
terms. A bijective correspondence between sétse A; and
subsums is established according to the following rule: each Qir _ Qe Qo _ Lip. (15)
subsum comprises th® — k terms of (11) associated with the Elat]  re T pr '

N — k different setsy*+1] so thata!*] ¢ o*+11, Itis thus pos- Moreover

sible to write

1
1 ‘ Ly > T A\al¥ 16
Frai(4 Z Z _1f(a[k+l])' (12) t _Z Z f( )f( \ov ) (16)
Mea e+l k + kle Ay
F e 1
alk Jcauﬁ] since all termsirL,,. are nonnegative. By explicitly writing the
ums in (16) and by grouping all productsiaélements of set

Since all the elements;, € A are nonnegative and their sun

is less or equal to 1, for each sef! A, after algebraic manipulations, it is possible to show that
S (o) < g (o). @) i £ ()7 (A\a
alk+1 500k ( ) ( ) ;k+1 a[gAk ( ) ( b )

As a consequence, by substituting (13) in (12), we obtain P—
- Z (1 - —) F(4) @7)

1
_- k1) —
P < Y 5 f(a¥) = 5 Bua). @)
alklC Ay, where Def|n|t|on 11 is used.

[ ] Smcez _1 pir < 1for construction, Proposition 1 applies,
Proof of Theorem 5:Denote bysi/ andd¥ the numbers of and it is possible to see that the second term of the sum at the
arrivals and departures, respectively, during timesslat queue right-hand side of (17) is larger than the third, and that the fourth
¢;;- The proof proceeds from the fact that, for all nonemptig larger than the fifth, and so on. This means that it is possible

queuesy;;, it is possible to finde € R* such thatE[a’y — to retain only the first term of the summation, and to write

d¥|z > 0] < —¢, i.e.,Ela¥|2¥ > 0] < E[d¥]|z¥ > 0] — ¢,

this is sufficient to state that the system of queues is stronglx > 1+ Z <1 _ _) Fi(A)>1-= Fl(A) 1

stable for Theorem 3. 2
Since with a RRD-SA the selection of the set of noncon- (18)

tending cells is state-independent and memoryless, the evalde can now combine (15) and (18) to obt&g. /p,. = Ly, >

ation of d is easy. In each internal time slot, the number df/2. ]

cells leaving a queue can be either 0 or 1. Thugl/] equals  Fig. 1 plotsLs; for the third input and a generic outpgiin

the probability@;; that a cell from queue;; is selected for the a switch with ? = 4 input and output ports, versus different

transfer. Consider a particular outpytthe probability that the values of arrival rates;;, when outputj is at maximum admis-

tth input queue leading tois selected by the input js,.. sible load: E .1 Ti; = 1. SinceLs;S > 1 guarantees stability,
Since all choices are state-independgntjs the probability 1/Ls; indicates alower bound to the value of speedup that guar-

that queuey,, is selected in any slot. Once selected, is antees stability. Note thdt/Ls; is always smaller than 2, and

granted the transfer with probability 1 if no other queue storirthat it is minimum for the most balanced traffic condition, i.e.,

cells directed to output is selected by other inputs; the queuéor r1; = ro; = ra; = (1 — r3;)/3 ~ 0.33.

is granted the transfer with probability 1/2 if only one other  Proof of Corollary 5: The algorithm for choosing at any

queue storing cells directed to outputis selected, and so internal time slot the set,, of candidate queues, given the state

on. Since all choices performed at each input are statisticalf/the system of queues,,, is the same as in RRD-SA. As

independent from each other, joint probabilities can be easdyconsequence, the probabili(C,,|X,,) that a particular set

evaluated as the product of marginal probabilities. C,, of candidate queues is selected by the inputs is the same
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ooz Given a setC, of nonempty candidate queues selected

by inputs, the output contention resolution algorithm im-
plemented at the outputs for both policies guarantees that
E[D,XT|X,,C, = maxp, E[D,XI|X,, C,]. Thus,
given two sets of candidate queué§ and C, such that
C; C Cy, thenE[D, XT|X,,, C1] < E[D, X1 |X,, C.].

As a consequence, Theorem 4 applies and the system of
gueues is proven to be strongly stable. [ ]

(.52
O35
051
06.508

[

VIl. QUEUE-LENGTH-DRIVEN SCHEDULING ALGORITHMS

In this section we prove that a simple scheduling algorithm
Fig. 1. 4 x4 switch using the RRD scheduling algorithm under uniform traffig 5t determines the set of noncontending cells to be transferred
pattern: probabilityL;; that VOQgqs; is served in an internal time slot once . . . . .
selected versus possible values of rates rs,; rs; = 0.01 andry; = 1 — from inputs to outputs in each internal time slot with a random
ri; — 25 — 3;. Dashed lines show the admissible region for ratesandrz;. ~ Selection based on queue lengths is stable for any speed-up value

greater than 2. Before reaching this point, however, we need

for both policies. Given a set,, of candidate queues selected® introduce some definitions and to derive some preliminary
by inputs, the output contention resolution policy impIementJ&SUlts'

> _ N
by LQRD-SA guarantees tha@[D,,(LQRD)XT | X, C] = Definition 12: Let U be the set o} € R™™ such that
maxp, E[D,XT|X,, C,]. As a consequence I
Vieip<l j=0 .. P-1
E[D,(RRD)X? - D,(LQRD)XZ|X,] ; Hr ’
= E[D,(RRD)X] — D,(LQRD)X|X,,, C,] p-1
o Zviﬂpg i=1,..., P (19)
PCL|X) <0 VX, i=0

Hence, for Theorem 4, the system is strongly stable. m  Definition 13: Given a vectod” # 0, V_€ R*™, let V' be
Proof of Corollary 6: Note that, givenX,,, ELQRD-SA the maximal vector parallel t§ in U, i.e.,V € U, k € R
guarantees that the size of the setsmiemptgandidate queues -

is maximal (i.e., the size of all the sets of candidate queues is V = maxkV.

equal to the number of inputs with at least one nonempty queue). ) )

For each nonempty queue, the probability of being selected a®efinition 14: Given a vectod” # 0, V € R*Y, define

candidate under ELQRD-SA is therefore not smaller than under -

LQRD-SA. po vy _ v
Indeed, itis possible to perfectly emulate the statistical distri- i v

bution of candidate set; of ELQRD-SA starting frqm the candi- Definition 15: Let I'y be the symmetric matrix associated

date_ sets generated_wnh LQRD'SA and completl_ng_ e_ach NWih the projection operator along the directioniofi.e.

maximal set to obtain a maximal one. To prove it, it is suffi-

cient to build the relatiod?(.X,,) between the sets of candidate ry = VIV,
gueues obtained with policies LQRD-SA and ELQRD-SA for
each queue configuratiaki,,: Indeed XT'y = (XVT)V for X, V € RN andXT'x = X.

« each maximal candidate sét,(LQRD) = C; is put The following theorem states that, if the vector of the average
in correspondence with sét,(ELQRD) = Cs, so that departure rate&[D,,] from the VOQ is parallel to the queue-

Cy = Co; length vectorX, and longer thatX , then the CIOQS is stable.
« each nonmaximal candidate 6t is put in correspon-  Theorem 6:1n a CIOQS with VOQ at each input, a sched-
dence with all set§’,, such that”; C Cs. uling algorithm such thak[D,,] = X,,(1+«) is strongly stable

With each pair of sets(;, C,), we associate the prob-for eacha € RT.
ability Prrqorp(C2|Cy) that C> is obtained according to  Moreover, if the average departure rate vedb,,| is pro-
ELQRD-SA, given that some inputs have already chosen theiwrtional to the maximal queue-length vector incremented by a
candidate queuelf; is the nonempty set of candidate queugsositivevectorD’, then the CIOQS is stable:
that have been already chosen by some inputs). Note thaTheorem 7:1n an CIOQS with VOQ at each input, a sched-
> e, Perqro(C2|C1) = 1. uling algorithm such tha®[D,] = X,(1 + «a) + D’ with

It is possible to see that, starting from the candidate Sgts D’ € RV is strongly stable for each € R*.
generated with LQRD-SA, and completing each nonmaximal Note that Theorem 6 does not imply Theorem 7, since the
set by applyingR(X,,) (i.e., choosing a sef’ in correspon- choice ofD’ affects the evolution ok,,.
dence withC; according to the associated probability distri- The following scheduling algorithm is similar to RRD, but
bution), the statistical distribution of the ELQRD-SA candidatthe selection rates are now derived from queue lengths, rather
sets is perfectly emulated. than average arrival rates:
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Definition 16: A CIOQS adopts dongest-queue-driven Note that the domain oF (v, X ) for a given, is the sur-
(LQD) scheduling algorithm if the selection of the set oface of the unit sphere iR+%, and thatF'(v, X,,), for a given
noncontending cells to be transferred from inputs to outputs &, is linear i iny, hence
each internal time slot is performed according to the following
algorithm. Flr %) = FL %)+ (- Dyt F K)o 20)
1. At each internal time slot n, the ith

input, within its own VOQ structure,

. > If v =1, thenF ,X s negative for allX,, that are not
chooses queue ¢; with a probability pro- = (v, Xn) is negativ

parallel to E[A,], since X, X7 > X, I'pa,1 X7, while it is

) ) 2
pomong} to the queue Iepgth The null for X,, parallel toE[A,].
probability 5 of selecting queue gi; is 0 ) ,
: i i g r P In order to prove stability, it is necessary to find a valueyof
if 2%¥ =0, and p¥ = 2% /max(>._, x¥, S W) . 5o o .

therwi With babilit 11 P ;  forwhich F(v, X,) is smaller than a finite negative constant
(r)lo eC;:,JvcleSuee. in Ithepr\(/)OaQ | ilsy chosen for ;eIIZizl P on the whole domain o
transfer. Queue 4, is the candidate of Note thatdF (v, X,,)/dv, performed forX,, parallel to

input ¢ to attempt a cell transfer (to- E[A,], is strictly positive. As a consequence, there exists a
ward output 7). e-sphere aroupc?( E[A n] where such derivative remains
2. Among. e co‘ntending candidate input Iar.ger'thgnafmlte positive constant. This implies that, m each

queues storing cells directed to the point inside thec-sphere, for any) < ~ < 1, F(% X,) is
same output, only one is enabled to smaller thgn a finite negative constant. Outside etm)hgre,
transfer its cell. The choice among the domain of F(~, X,,) is closed, hence the maximum

contending candidate input queues is value exists; _moreover, being away frofi, = E[4,],
performed at random, according to a uni- maxg F(y, X,,)is strictly negative fory = 1.

form distribution; i.e., if there are k For continuity,maxs. F((1 —¢), X,,) is negative fow suf-
candidates for the same output 4, only ficiently small. As a consequence, for= 1 — §, F(’y, X, )is
one input receives a transfer grant, and smaller than a finite negative constant for all valuetof m
the probability of receiving the grant Proof of Theorem 7:SinceD’ € RT¥, two cases are pos-
is 1/k for each input queue. sible.

* E[A]] = E[A,]— D’ € U;inthis case the stability of the
algorithm can be easily proved by usi@g= 7 —I"g[.y |
in the previous proof.

* E[A,] — D' is not in U due to negative components;
in this case it is possible to spli! = D” + D", so

Theorem 8:Under admissible load conditions, a CIOQS
adopting a LQD-SA is strongly stable for any speedsup 2.

VIIl. PROOFS FORSECTION VII

Proof of Theorem 6:Consider theV x N positive matrix that E[A]] = E[A,] — D" € U, and D"’ (containing
Q = I —Al'gpy, where0 < v < 1andE[A] € U is the all negative components) is orthogonal #§4,,] — D”.
vector of the average cell arrival rates; it is easy to prove Also in this case, the algorithm can be proved stable by
thatQ is positive (semi)definite. By defining’ = XQX7 as using@ = I —yI'gpa; ) in the previous proof (note that
the Lyapunov function for the CIOQS, we prove that for some  D"'I'gra:; = 0, because of the orthogonality between
B € R*, ¢ € Rt there existsy such that D" andE[A,] — D").

[ ]

EXn1QX 5 — XpQX | X,] < =€l Xall [ Xa]l > B. Proof of Theorem 8:The average number of times that a

particular queue is selected as candidate in internal time slots
is p¥, andp¥ > 7% by definition. Since matri¥pi/] can be
viewed as a matrix of admissible rates loading the CIOQS, from
X, 0XT|X,] the proof of Theorem 5 the probability that a queue is served
once selected in each internal time slot is not less than 1/2. As a
consequence, using speedAp- 2, we haveF[ D, (LQD)] =

(14 a)X,, + D, with a = 0, and whereD!, accounts for

the extra service due to the fact thaf > 7%/. Vector D/, is

Hence Corollary 5 applies, and the CIOQS is strongly stable;
Indeed, for| X, || growing to infinity, and using (1)

= lim ——
||Xn||—>oo ||X'n||

AE[AL)X — E[D,] X —vE[A, X7 a function of X,,, so that Theorem 7 does not directly apply.
+vE[D, )l gpa, 1 X} Note thatD/, is indeed a function ok, (it does not depend on
— 2{E[AJRT(1 - 4) — (1 + )X, X7 |X, 1), sincep¥ is a function ofz%.
1+ a) Xl g, XT} Considering the evolution of the system we can write:
RAS nt Bl E[X,41] = E[X,]+ E[A,] — (1 + )X, — D'(X,,). Without
= F(y, Xn). loss of generality, we assum@[4,] — D;, € U. If instead

5Note that this probability is directly dependent E[A] =D, ¢ U, argumeqts similar to those used in the proof
from the time instant 2 NOW. of Theorem 7 can be applied.
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The system of queues can be proved to be strongly stable . DETERMINISTIC WEIGHTED SCHEDULING ALGORITHMS

using a time-variant Lyapunov function. Define

Qn = B(Xn) (I = YL ppa,)—pr)

Next, we apply the results obtained in the previous sections
to scheduling algorithms that were proposed in the literature for
input queueing switches.

where0 < v < 1is a real constant (as in the proof of Theorem Definition 17: A CIOQS adopts amaximum weight
6), andj3(X,,) is a function ofX,, that will be defined in the Matching (MWM) scheduling algorithm if the selection of

sequel. According to Corollary 5, we need to prove that

E[Xn+lQn+erq;+l - XnQnXg”Xn] < —e

lim
(| X ||

| X5 | —oo

By adding and subtracting[X,,11 Q. X | X,.] we get

— X1 Qn X1 | X0]}

{E[Xn-l-lQn-I-erz;-l—l

+ X 1Qn Xy

lim ——

< —¢€

the set of noncontending cells to be transferred from inputs to
outputs at each internal time slot is performed according to the
MWNM algorithm [8].

Let W, represent a weight vector at time and letD,,
be an admissible departure vector. The departure vector
produced by an MWM-SA is such thd?,(MWM)W! =
maxp, (D, WT).

If we setW,, = X,,, whereX,, represents the state at time
of the system of queues of a CIOQS with VOQ at each input,
the departure vector produced by an MWM-SA is such that
D, (MWM)X! = maxp, (D,X1).

In [5], using as Lyapunov functiol (X,,) = X,, X!, it was

but, if 3(X,,) takes only positive (nonnull) values, from Theproved that, for any CIOQS adopting an MWM-SA with, =

orem 7 follows that

E[Xn—l—lQnX3+1 - XnQnXg”Xn]
[l

lim
”Xn”_’oo

X,
EXpn X — Xo X5 X,] < —€]| X,

for || X,,|| sufficiently large. As a consequence, due to Corol-

since only the (symmetric positive definite) matéps, appears lary 3, the following result holds true
in the last inequality. Furthermore, we can choose function-l-he’Orern 9: Under any admissible.traﬁ‘ic pattern, a CIOQS

B(X,,) such that

E[Xn-l-lQn-l-erz:-l—l - Xn+1Qan?+l|Xn] _

_ 0.
(1]

lim
||Xn||—>oo

Indeed, if we assume that

E[Xni1Qn1 X211 X0
ElX, 10 X111 X,]
1 v, Xp: [[Xn|| < B

Y, X, | Xn| > B
B(X,) = 1o

whereC,, = (I — vI'gr4,1-p; ), We can write

E[Xn+1Qn+1X3;+1 - Xn+lQnX77;+l |Xn]
X0l

lim
| Xn|l— o0

1

= lim ——
||Xn||—>oo ||X'n||
. {E [Xn+1Qn+1X3+1

ElX,, ¢
_E| 7+1Q +17Tn+1] X1 Co X2, X,
E[X,41CoXT,,

=0.

Note that3(.X,,) is defined in recursive form as long §,, ||
keeps greater thaB:

E[Xn+lch77;+l |Xn]

3(Xo41) = BX, '
B(Xnt1) = B( )E[Xn+10n+1X;€+1|Xn]

adopting an MWM-SA with weights equal to queue lengths is
strongly stable for any speed-p> 1.

The algorithmic complexity required for the computation
of the MWM departure vector is quite large (algorithms are
known with asymptotic complexit®( P3 log P), see [8]). This
severely limits the practical relevance of the stability result,
and has encouraged researchers to look for simpler policies to
approximate the MWM algorithm in input buffered switches
with speed-upS = 1. Note that none of the many heuristic
proposals that appeared in the literature was proven stable
under any admissible traffic pattern for speedfip= 1, or
larger.

The following result indicates a way to design stable transfer
policies for switches with moderate speedsiphose compu-
tational requirements can be arbitrarily constrained, at the ex-
pense of increased cell queueing delays and burstiness of the
cell transfers.

Corollary 7: Consider a ClIOQS with speed-u Assume
that a scheduling algorithi® is found such that for some e
Rt, B € R,

1
D, (P)XE > <§ + c) D,(MWM)XZ, | Xn|| > B

for each vectoX,,. Given, a new scheduling algorith@(*)

is defined, according to whicR is executed only once in each
external time slot, to select a set of noncontending cells, whose
transfer is enabled times, once in each of th& internal time
slots comprised in the external time slot. Thus, ug &ells can

Since matriceg”,, are symmetric and positive definite, thebe transferred from the selected queues in each external time
fraction at the right-hand side of the equation above is alwagiot.
positive. Taking3(Xo) = 1, it is possible to show that(.X,,) A CIOQS with speed-up adopting policyP®) is strongly
remains strictly positive (even far — o). m stable under any admissible traffic pattern.
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Note that the previous result can be easily extended: nents ofX,, referring to selected queues with size smaller than

Corollary 8: Consider a CIOQS with speed-ifh Assume S; as a consequenc®; , X1 < P(S —1)2. Then
that a scheduling algorithr® is found such that for somee s r r
R, B € RY Dy, (P) X = (SDu(P) = Dy )X,

T 1 - =SD,(P)XL — Ds , X7
D, (P)X, > <§ + c) D, (MWM)X,, | X.| > B
From the assumptions we have thus

for each vectorX,,. Given?, andK € N, a new scheduling
algorithmP5) is defined, according to whic® is executed
only once everyK external time slots, to select a set of non- - T
contending cells, whose transfer is enabléd times, in each FO;”‘;{"” suﬁ;}ueg%y Ia;?;’ ?TthamaXDn(%‘)ggT) ~ P()j(ih_
one of theK S internal time slots comprised between two suc) /(5¢), we haveD,,(P22)).X,, > maxp, (Dn Xy ) and The-

cessive executions of the algorithm. A CIOQS with speecﬂupor?l_';?s 4 an? 9f6g)plyil 8 traightf d i .t'
adopting policyP) is strongly stable under any admissible , | '€ Proot ot oroflary ¢ is a straightforward generalization

traffic pattern of the proof above.

Consider a CIOQS with speed-fh and adopting a sched- Proof of Corollary 9: For the sake of brevity, we report the

uling algorithm®’, which is executed at each internal time sl r(_)of on!y for the caseéf = 2. The extension to larger values of
is straightforward.

D, (7:<5>) XT > (14 Se)max(DXT) = P(S - 1)

to select a set of noncontending cells. igf ;, i =1, ..., S, F th i h
be the departure vectors referring to tile internal time slot rom the assumptions we have
corresponding to theith external time slot. LefX,, ; be the D, 1(73’))(3 L >1/2D, 1(1\/[\7\/1\/[))(7’{1 +N,  (21)

queue-length vectors referring to tkté internal time slot cor-

responding to theth external time slot. Note that,, ; = X,

andthatX,, ;+1 = X, ;, — D, ;,t=1,2,...,5—1. By definition Dn,2(1\/[Wl\/[)X,€2 = lnaXD7L2(Dn72X7€ 2)-
Corollary 9: A CIOQS with speed-up adopting policy” Then

is strongly stable under any admissible traffic pattern if

Dy 2o(PHYXYE , >1/2D, o(MWM)X ) + Np.  (22)

D, 2(MWM)XT,
1 ,
Dn,i(P’)X,ZizEDn,i(MWM)X,ZﬁNM, i=1,..., 8 > D, 1(MWM)X] ,

T va /
where N; is the number of queues selected by b#&hand = Dn i (MWM)XG, 3 = D i (MWM)D,, 4 (P7)
MWM at the ith internal time slot. = Dp 1 (MWM)X; | — N1 (23)

We next prove the stability of MWM algorithms. Considering thatD,, »(P)XT, > D, »(P)XT, since
Definition 18: A CIOQS adopts g@reedy maximal weight X, =X, 1—D,1, and thatr}yrom_(ZZ) and (23)7§Ne have
matching (GMWM) scheduling algorithm if the selection of ' '
the set of noncontending cells to be transferred from inputs to Dn72(7)/)X,€ > ) Ny (24)

outputs at each internal time slot is performed according to the 2
following algorithm. Finally, combining (21) and (24)

[Dy,1(P') 4 Dn,2(PHIXE | > Dn 1t (MWM)X/] .

D1 (MWM)XT, — N

1. All queues ¢:;; within the whole VOQ

structure are initially enabled. Comparing the departure vectors in external time slots, and
2. The longest enabled queue (say 0sd) IS being the MWM-SA stable af = 1, P’ is strongly stable due
selected for cell transfer (ties are to Theorem 4. |
broken with a uniform random choice). Proof of Theorem 10:We show thatD,,(GMWM)X?* >
3. All enabled queues g;; with either i = s (1/2)D,(MWM)X?! +K foreachX,, whereK is the number
or j=d are disabled. of queues from which a cell is transferred according to both
4. If no enabled queues remain, then stop. D,(GMWM) and D,(MWM), and prove stability according
Else return to Step 2. to Corollary 8.

Note that the scalar product between a departure véetor

Theorem 10:A CIOQS implementing a GMWM-SA is and the vectoX,, equals the sum of the queue lengths over all
strongly stable for als > 2. queues from which cells are transferred

N

. o ‘

X. PROOFS FORSECTION IX D XY= "diat = Y i
i=1

Proof of Corollary 7: Let D,,(P) be the global depar- =t
ture vector, referring to one whole external time slot; itte Let I}(MWM) be the set of queues selected for cell
component ofD,, (P is d' (P®)) = min (S’ (P), %), transfer with MWM; let I}(GMWM) be the set of
whered: (P) is theith component oD,,(P). queues selected with GMWM. Assume thB{MWM) ##
Let Ds , = SD,(P) — D,(P)). Note that, by construc- I}(GMWM), otherwise the proof trivially follows, since

tion, the nonnull components d; ,, correspond to compo- D,,(GMWM)XT = D,,(MWM)XT.
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If the cardinality of I} (MWM) or I}(GMWM) is smaller ~ Theorem 12: A CIOQS with speed-up 2 implementing a fair
than P, we can augment the two sets by adding some empiSM-SA is strongly stable under any admissible traffic pattern.
gueues, so that the augmented sets comgtisenconflicting
queues. XIl. PROOFS FORSECTION XI

Let g; , ,, be the longest queue iff (GMWM). i - - L .

hi,n The stability proof is logically subdivided in three parts:

It g}, € LHMWM), we setl2(MWM) = Z(MWM) — 1 % ! 'f.yp ! f hg' yf N gl'f. ' P
{g} ;¥ andIZ(GMWM) = IL(GMWM) — {g} , ,.}. ) Snt ij irstparto '; e ?rtc))prt, Yve efine a queueing system

Otherwise, select all queues IH(MWM) that conflict with 1 ’tahn we prgve ! f sta Ir|1y’ how it | ible to inf
gt . ,.; the selection returns at most two queues: .. .. (con- ) In the secon part, We Show NOw I IS Possile 1o Iniet,

b o . . 1 L . from the stability of systent, that a CIOQS imple-
flicting with ¢; . ,, on inputz), andm;. . . (conflicting with . .

1 2 J5 ] 2 menting an MSM-SA achieves 100% throughput, thus
i j.» ON outputy).

. 1 proving Theorem 11,
By construction, the lengths of queues; ;. ,, and. ;. , 3) In the third part, finally, we show how it is possible to

cannot exceed the length of quayfg; ,,- Thus, the sum of their infer, from the stability of systen¥, the strong stability

Iensget?slési(lgf/[sv\(f)lrv[e)qual_to tv?f(e(;;/[evl\g\rgtméfj:{’;l } and of all input queues in a CIOQS implementing a fair
» o - M MSM-SA, thus proving Theorem 12.
2 _ 1 1 1
In(MQWM) = LMWM) — {m} ;. n,mb o} hNote
that/;(MWM) can notcompnsequeuescpnfllcnr.]gvvgtl’j,n. A. Part |
g; ;. n» the longest queue i, (GMWM), is considered next,
and the elimination of queues frofj (GMWM) continues as
long as the set is not empty. If aftérstepsI*(GMWM) is
empty, thenI*(MWM) must contain only empty queues; in-aueue of the CIO_Q_S)'
deed, suppos& (MWM) contains a nonempty queue, this im- Customers arriving a_t th_e ql_JeuesSirbeIong t_o two classes,
plies that at least one nonempty queue exists that does not dg)%medca andc. Priority is given to the service of class,

flict with any one of the queues if),(GMWM). This however customers, |.e.f, th:§never abclzﬁ§ cudstomer 'S N ﬂueu&j'
is not possible, since GMWM is a maximal size matchinga no customer of clase’, can be served at quews;. However,
the server of queus; is active only when at least one customer

of classC is in queues;;. Let « andz’ denote the numbers
XI. MAXIMAL SIZE MATCHING SCHEDULING ALGORITHMS  of cystomers of classe®, andC,, respectively, at time. The

In this section we considenaximal size matchingsched- Vvector X,, = (z, «%) contains the state information for the
uling algorithms (MSM-SA). Many scheduling algorithms progueue at time:. Similarly, the vectoD,, = (ds, d7,) contains
posed in the literature [13]-[16] fall in this class. the information about the departures from the queue in time

Definition 19: A CIOQS adopts an MSM-SA if the selection ~Theorem 13:Each queus;; of systems is strongly stable if:
of the set of noncontending cells to be transferred from inpuighe average number of clas customers at;; is greater than
to outputs at each internal time slot is performed according Z87© E[z},] > 0), and ii) the average total number of arrivals
the MSM algorithm. per slot ats;; is less than oneK[ag; + a;;] < 1), and iii) the

Consider any queug; in the VOQ structure, that stores cellssécond moment of the total number of arrivals per slaf ais
atinput; directed to outpuf. Recall that cells stored ip; com-  finite (E[(af; + af;)?] < ).
pete for inclusion in the set of noncontending cells generated by Proof: Consider a generic queug; of systems5. In the

the scheduler with cells stored in each quewevith k £ j and following, we always refer to queug;, and, in order to simplify
qn; With b # i. the notation, we omit the queue indices.

a

If ¢i; is nonempty, the MSM algorithm generates a set of The Vectord, = (aj, a;,) contains the information about
noncontending cells that comprises at least one cell extractB@ arrivals at the queue in slot Since we assume that vectors
from I;; = (J, {@ix U ar; } (exactly one, if the cell is extracted A, are statistically mdeper_wder_lt, the queue evolution process is
fromg,,; possibly two, if one cell is extracted fromg,, k # J, a DTMC, whose state at time is X,,, and whose dynamic is
and one from ay,;, k # ). driven by

Definition 20: A CIOQS adopts #air scheduling algorithm (z2, 22) + A, — (1, 0) if 2% #0andz® #0
if the first two moment; of the_dlstrlbutlon of the time mteryal ﬁ(n+1 =4 (0, 22)+ 4, — (0, 1)  if 2% = 0 anda®. £0
between two consecutive services of any nonempty queue in the " " "
VOQ structure are finite under any admissible traffic pattern. (25, 0) + An if 7, = 0.

Consider a system of queudscomprisingN = P? dis-
crete-time queues;; (each queue i¥ corresponds to an input

: I (25)
In the next section we prove the following important result, . . .
which was derived with different techniques also in [30], ap- Givena € R, consider the Lyapunov function
plying the methodology presented in [29]. (z2)? i b 0
Theorem 11:Under any admissible traffic pattern, a CIOQS V(X,)= a In = (26)
adopting an MSM-SA achieves 100% throughput for any (22 +22)?  otherwise.
speed-upS > 2.

i i ; + + +
If the maximal size matching scheduling policy is fair, then I;:strﬁ):tssmle tofindx € RY, & < 1,¢ € R™ andB € R

the queueing delay can be proved to be bounded, and thenThe
CIOQS is strongly stable: ElV(Xpt1) — V(X)) X0] < —€]| X0l
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for || X,.|| > B, so that the system of queues is strongly stabthat at timen = 0 both the system of queues and the CIOQS

for Theorem 2.
Consider firstX,, = (22, 0), i.e.,2% =0, and||X,.|| = z2;

are empty.
Ifin the CIOQS a cell arrives at queyg; at timet*, then in

in this case
E[V(Xn+l) — V(Xn)|Xn]
1|l

the system of queues at tim&

* aclassCy customer arrives at queug;;
* a class C, customer arrives at each queusg;,

E[(2% + a%)?|z?, ab = 0] , l_ =1,...,P, 1 # 4 and a clas¥, customer ar-
= az Pr{a, =0} rives at each queug,,,m =1, ..., P,m # j.
The arrival of a clas€’, customer at queug,; corresponds to
E 9 + a’ + CLb 2 po CLb > 0 ' b J
+ (o + Z) 5, @ > 0] Pr{a® > 0} the arrival of a cell at queug;;. The presence of a clasg,
w2 Tn customer in queus;; corresponds to a delay, i.e., toiaternal
_ (z7) time slot in which no cell is transmitted from quegg, due to

oz the transmission from a queue that is contending withThen
Since the second moment of the distribution of the number thfe total number of arrivals at queug is

arrivals per slot is finite, taking the limit fof.X,,|| — oo, we

obtain an(sij) = Z aif
sup EV(Xat1) = V(X,)|X,] ijlqi; iy
11, | =00 [| X ] wherel;; = Up{an Ua;}. .

=0 Let B,,(¢) be afunction thatis equal to 1 if the number of cells

o x2 by N b x® in queuey is greater than zero at time B,,(¢) = 0 otherwise.

= ,;}12900 [; Pria, =0} + a7 Pria, > 0} — —* The following results apply.
1 , Theorem 14:Let N* be a time in which the queus; is

= i “11—-——)P 0

et < a) r{a,, > 0} empty. Then
=—00 N* N*

Z By (qij) £ Z By (si5)- (27)
n=0 n=0

Proof: First, observing thaEf::O B, (s;;) is the total

forany0 < « < 1.
Instead, forz?, # 0,

E[V(Xn+l) - V(Xn)|Xn]

ixo sup %] busy time in the intervald, N*], we have that
xfﬁéo ) N* N*
, o 2t ah Y anlsi) £ Balsig) (28)
= lim sup |2E[ad +a, — 1] ————— n=0 n=0
1 | =00 (@2)? + (a1)? . .
@b #0 since no more than one customer can depart from qugua
<0 each time slot, but no customer can leave the queue when only

classC, customers are present.

sincel < (a7+a;,)/V/(27)? + (27)? < V2. El(a +a,~1)%] Second, considering queyg of the CIOQS, we have

is finite, andE[a2 + a%] < 1.
In addition, if the second moment of the number of arrivals
per slot is bounded, there exists &hsuch that

EV(Xop)|Xn] <M VX, ||X.|| < B.

As a consequence, quesig is strongly stable for Theorem 2,
and since the proof holds for any queuesinthe whole system
of queuess is strongly stable. [ | . LW

It is possible to extend these results to arrival processes that N . N
present some form of correlation (i.e., for which vectdrsare A?ii%o N Z:OB"(Q”) S Jm N Z Bu(sij) <1 w.p.L.
not independent). In this case the state definition for the Markov " ) _ _
chain must be augmented with additional state variables. The Proof: The second inequality holds because systéis
extension is straightforward when these additional state vafgscribed by an ergodic DTMC, so that
ables take only a finite set of values, since they can be mapped
onto vectordy,, of Corollary 1 and Theorem 2. For example, the
arrival processes at queues can be Markov modulated Bernoulli
processes. Itis, however, necessary to guarante€fahf|Y,,] beingm, the stationary probability that the quesig is empty.
is an admissible load vector for each stite For what concerns the first inequality note that, by Theorem 14,

there exists a sequence of timgssuch that

N N
Z Bn((ﬁj) < Z an(sij) VN eN

n=0

(29)

n=0

since, ifB,,(¢;;) = 1, at least a cell departs from queuedin
As a consequence, comparing (28) and (29), we derivem(27).
Corollary 10:

n=0
1
Algréo N z_:an(Sij) =1-—mg w.p. 1

B. Part Il

Let us correlate the arrival processes of the CIOQS and of the
system of queues studied in the previous subsection. Assume

N* N*
1 1 i
~ > Bulaij) < oo > Bu(si;) N e€Z
n=0

n=0
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whereZ, is the set of times in whick;; is empty. Since system C. Part Ill

S, being strongly stable, is described by an ergodic DTMC

sup Zs = oo. As a consequence

N* N*
J\’l}gloo N z_: Bo(gi;) < hm E:OB si5) =1 —m.
But, being sequencg /N) Z o Bn(qi;) convergent, it con-
verges to the same limit of all |ts subsequences. [ |

Corollary 10 implies that there exists a infinite sebf time
instants in which queue; is empty (note that we have not yet
proved stability of the CIOQS, hence of the ergodicity of the

underlying DTMC), i.e.:
Corollary 11: Let Z = {n € N|B,,(g;;) = 0}. Then

sup Z = oo.

Proof: By contradiction, let us suppose thaip Z =
M < o0. Then

. 1
Algrclw N Z Bulais)

N
= Jlm = <ZB )+ Y Bn(qz‘j)>
Oo n=M-+1
N
= lim — Z By (qi;)
Nooo N
) -M
= lim
N—oo
But this contradicts Corollary 10. [ |

Finally, we can prove Theorem 11.

Proof: Let us consider a queug;. We have to prove that

lim
N—oo

w.p. 1.

Consider the subsequerm”ﬁ@, N* e Z.By definition,aﬁ{; =
0, and

0
TR

lim =0

.p. 1.
N#*CZ—oo N* wp

The Cesaro surfil/N) Zn _o 4% is convergent; then’ /N is
convergent:

= Ela;;] — w.p. L.

' Let us correlate in the following way the arrival processes of
the CIOQS and of the system of quewestudied in the previous
section. Ifacelp}; arrives at queue;; attimet*, then at time*

1) A classC, customer arrives at queus;.
2) For each queue,,, # s;;, with eitherm =i orn = j,
a classC, customer arrives only if celp}; leaves the
CIOQS before any cell currently stored in the CIOQS
queUGann-
3) Queuss;; receives a batch of clag, customers, whose
size is equal to the number of cells stored in quengs#
gi;, With eitherm = ¢ orn = j, and leaving the CIOQS
before cellp;;, but after any other cell stored i; .
The presence of a clag$ customer in queus;; corresponds
to the presence of a cell in queyg. The presence of a class
C, customer in queus;; corresponds to a delay, i.e., to @A
ternal time slot in which no cell is transmitted from queusg.
SystemsS is work conserving, in the sense that a customer, if
present, is served at each internal time slot. Note that this is true
only under the particular traffic pattern that we consider, which
allows clasg”, customers to be in waiting lines only when also
at least one class), customer is present. Instead, the VOQ's of
the CIOQS are not work conserving, in the sense that no waiting
customer may be served in a slot, due to input or output con-
tention. Nevertheless, the flow of cla€% customers in system
S exactly mimics the flow of cells in the CIOQS running a fair
MSM scheduling algorithm.

Queues;; receives customers 1) when a cell arrives at queue
gi;,» and 2) possibly when a cell arrives at a queus,, with
eithern = 4, orm = j (i.e., a cell arriving at the same input
port, or directed to the same output port). In the former case a
classC;, customer enters;;, possibly together with a batch of
classC, customers. Inthe latter case one cl@ssustomer may
arrive at queus;;.

Note thatthe batch of clags, customersis due to clag€s cus-
tomers (i.e., cells in the CIOQS) stored at other queues, and that
a(C, customer arrived at another queue at most generates (either
upon arrival, orin a later batch) okdg customer at queus;.

We can therefore state the following theorem.

Theorem 15:The total average arrival rate of cla§s and
classC} customers at queus; does not exceed the sum of the
arrival rates at queues,,, with m = ¢ and/orn = j (including
queuey;;).

Proof: By construction, at most one claSg customer ar-
rives at queus,; for each clasg§’, customer arriving or queued
at queuey,, # gi;, with eitherm = i orn = j. SinceCj, cus-
tomers in systenty correspond to cells in the CIOQS, at most
one customer (either clagg, or classC}) arrives at queus;;
for each cell arrival at a queue belonging to inpuarr directed
to outputy. |

Obviously, the following property holds.

A converging sequence converges to the same limit of anyProposition 2: The number of cells stored in any quegeg

subsequence. Thus

: 2)
lim N lim N 0
N—oo N*€Z —oo *
and the system achieves 100% throughput. [ |

never exceeds the total number of customers (of claSsesnd
C) stored ins;;.

Theorem 15 implies that the average arrival rate of customers
at each queus;; is less than 2 customers per external slot if the
traffic loading the corresponding CIOQS system is admissible.
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For what regards the second moment of the arrival process gs]
systemsS, the following property holds.

Theorem 16:If the CIOQS implements a fair MSM policy
(according to Definitions 20 and 19), then the second moment
of the size of the batch entering queyg s finite.

Proof: Any batch contains only as many customers as thel”]
number of cells stored i@, # g¢;;, With eitherm = i or
n = j, that leave the CIOQS befogg;, but after any other cell
stored ing;;, i.e., between two consecutive serviceg;9f Since
the policy is fair, the first two moments of the time between [
two consecutive services is finite, and thus also the first twg,
moments of the batch size are finite. [ |

Theorem 12 holds as a consequence of the previous results,

Proof of Theorem 12:Consider the system of queuss
and assume that the rate at which customers are served in system
S is equal to the internal CIOQS rate, i.e., to twice the external
cell rate. Because of Theorem 15, the average total number g
arrivals per internal slot (considering both clasSgsandC,) at
any queus;; is less than 1, under any admissible traffic pattern13]
Furthermore, because of Theorem 16, the second moment of the
total number of arrivals at queus; is finite. [14]

As a consequence, the system of quetiés strongly stable
due to Theorem 13.

Since we have seen that each queue in the VOQ structuf&’)
cannot be longer than the corresponding queue in the system
of queuesS, also the CIOQS must be strongly stable. = [16]

(8]

XIll. CONCLUSION [17]

In this paper we computed stability conditions for several
scheduling algorithms used in combined input/output queueing
switch architectures. A formal, analytical approach, mainly[18]
based upon Lyapunov functions, was used to derive the internal
switch speed-up needed to grant stability to vast classes of
scheduling algorithms. [19]

Our novel results show that an internal speed-up equal to two
permits strong stability to most algorithms, when virtual output
queueing is implemented, and the policy to select the set cﬁol
noncontending data units avoids head-of-the-line blocking phe-
nomena. [21]

The main results are Theorems 5 and 8, referring to a random
selection of the set of noncontending cells based upon inpyy)
rates or queue lengths, Theorem 10, referring to greedy max-
imal weight matching, and Theorems 11 and 12, referring to
maximal size matchings. [23

These results provide interesting inputs to the implementation
of the high-performance switching architectures that are neces-
sary in the near future to support the exponentially increasinéz‘”
traffic of the Internet.

[25]
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