
The interface message processor for
the ARPA computer network*

by F. E. HEART, R. E. KAHN, S. 1\II. ORNSTEIN, W. R. CROWTHER and D. C. WALDEN

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

For many years, small groups of computers have been
interconnected in various ways. Only recently, how­
ever, has the interaction of computers and communica­
tions become an important topic in its own right. ** In
1968, after considerable preliminary investigation and
discussion, the Advanced Research Projects Agency
of the Department of Defense (ARPA) embarked on
the implementation of a new kind of nationwide
computer interconnection known as the ARPA N et­
work. This network will initially interconnect many
dissimilar computers at ten ARPA-supported research
centers with 50-kilobit common-carrier circuits. The
network may be extended to include many other
locations and circuits of higher bandwidth.

The primary goal of the ARPA project is to permit
persons and programs at one research center to access
data and use interactively programs that exist and
run in other computers of the network. This goal may
represent a major step down the path taken by com­
puter time-sharing, in the sense that the computer
resources of the various research centers are thus
pooled and directly accessible to the entire community
of network participants.

Study of the technology and tariffs of available
communications facilities showed that use of con­
ventionalline switching facilities would be economically
and technically inefficient. The traditional method of
routing information through the common-carrier
switched network establishes a dedicated path for each
conversation. With present technology, the time
required for this task is on the order of seconds. For

* This work was sponsored by the Advanced Research Proj··
ects Agency under Contract No. DARC 15-69-C-0179.
** A bibliography of ~elevant references is included at the end of
this paper; a more extensive list may be found in Cuadra, 1968.

551

voice communication, that overhead time is negligible,
but in the case of many short transmissions, such as
may occur between computers, that time is excessive.
Therefore, ARPA decided to build a new kind of
digital communication system employing wideband
leased lines and message switching, wherein a path is
not established in advance and each message carries an
address. In this domain the project portends a possible
major change in the character of data communica­
tion services in the United States.

In a nationwide computer network, economic con­
siderations also mitigate against a wideband leased
line configuration that is topologically fully connected.
In a non-fully connected network, messages must
normally traverse several network nodes in going from
source to destination. The ARPA Network is designed
on this principle and, at each node, a copy of the mes­
sage is stored until it is safely received at the following
node. The network is thus a store and forward system
and as such must deal with problems of routing, buffer­
ing, synchronization, error control, reliability, and
other related issues. To insulate the computer centers
from these problems, and to insulate the network from
the problems of the computer centers, ARPA decided
to place identical small processors at each network
node, to interconnect these small processors with
leased common-carrier circuits to form a subnet, and
to connect each research computer center into the net
via the local small processor. In this arrangement the
research computer centers are called Hosts and the
small processors are called Interface Message Processors,
or IMPs. (See Figure 1.) This approach divides the
genesis of the ARPA Network into two parts: (1)
design and implementation of the IMP subnet, and
(2) design and implementation of protocols and tech­
niques for the sensible utilization of the network by
the Hosts.

Implementation of the subnet involves two major

From the collection of the Computer History Museum (www.computerhistory.org)

552 Spring Joint Computer Conference, 1970

50 KILOBIT CIRCUITS

Figure I-Hosts and IMPs

technical activities: providing 50-kilobit common­
carrier circuits and the associated modems; and pro­
viding IMPs, along with software and interfaces to
modems and Host computers. For reasons of economic
and political convenience, ARPA obtained common­
carrier circuits directly through government purchas­
ing channels; AT&T (Long Lines) is the central coordi­
nator, although the General Telephone Company
is participating at some sites and other common
carriers may eventually become involved. In January
1969, Bolt Beranek and Newman Inc. (BBN) began
,york on the design and implementation of IMPs; a
four-node test network was scheduled for completion
by the end of 1969 and plans were formulated to
include a total of ten sites by mid-1970. This paper
discusses the design of the sub net and describes the
hardware, the software, and the predicted performance
of the IMP. The issues of Host-to-Host protocol and
network utilization are barely touched upon; these
problems are currently being considered by the par­
ticipating Hosts and may be expected to be a subject
of technical interest for many years to come.

At this time, in late 1969, the test network haR
become an operating reality. IMPs have already been
installed at four sites, and implementation of IMPR
for six additional sites is proceeding. The common
carriers have installed 50-kilobit leased service con-

necting the first four sites and are preparing to install
circuits at six additional sites.

The design of ~he network allows for the connection
of additional Host sites. A map of a projected eleven­
node network is shown in Figure 2. The connections
between the first four sites are indicated by solid lines.
Dotted lines indicate planned connections.

NETWORK DESIGN

The design of the network is discussed in two parts.
The first part concerns the relations between the
Hosts and the subnet, and the second part concerns
the design of the subnet itself.

H ost-subnet considerations

The basic notion of a subnet leads directly to a
series of questions about the relationship between the
Hosts and the subnet: What tasks shall be performed
by each? What constraints shall each place on the
other? What dependence shall the subnet have on the
Hosts? In considering these questions, we were guided
by the following principles: (1) The subnet should
function as a communications system whose essential
task is to transfer bits reliably from a source location
to a specified destination. Bit transmission should be
sufficiently reliable and error free to obviate the need
for special precautions (such as storage for retrans­
mission) on the part of the Hosts; (2) The average
transit time through the subnet should be under a
half second to provide for convenient interactive use
of remote computers; (3) The sub net operation should
be completely autonomous. Since the subnet must
function as a store and forward system, an IMP must
not be dependent upon its local Host. The IMP must

--

Figure 2-Network map

From the collection of the Computer History Museum (www.computerhistory.org)

continue to operate whether the Host is functioning
properly or not and must not depend upon a Host for
buffer storage or other logical assistance such as pro­
gram reloading. The Host computer must not in any
way be able to change the logical characteristics of
the sub net ; this restriction avoids the mischievous or
inadvertent modification of the communication system
by an individual Host user; (4) Establishment of
Host-to-Host protocol and the enormous problem of
planning to communicate between different computers
should be an issue separated from the subnet design.

Messages, links, and RFNMs

In principle, a single transmission from one Host to
another may range from a few bits, as with a single
teletype character, up to arbitrarily many bits, as in a
very long file. Because of buffering limitations in the
subnet, an upper limit was placed on the size of an
individual Host transmission; 8095 bits was chosen
for the maximum transmission size. This Host unit of
transmission is called a message. The sub net does not
impose any pattern restrictions on messages; binary
text may be transmitted. Messages may be of variable
length; thus, a source Host must indicate the end of a
message to the subnet.

A major hazard in a message switched network is
congestion, which can arise either due to system
failures or to peak traffic flow. Congestion typically
occurs when a destination IMP becomes flooded with
incoming messages for its Host. If the flow of messages
to this destination is' not regulated, the congestion
will back up into the network, affecting other IMPs
and degrading or even completely clogging the com­
munication service. To solve this problem we developed
a quenching scheme that limits the flow of messages to
a given destination when congestion begins to occur
or, more generally, when messages are simply not
getting through.

The subnet transmits messages over unidirectional
logical paths between Hosts known as links. (A link is
a conceptual path that has no physical reality; the
term merely identifies a message sequence.) The
subnet accepts only one message at a time on a given
link. Ensuing messages on that link will be blocked
from entering the subnet until the source IMP learns
that the previous message has arrived at the destina­
tion Host. When a link becomes unblocked, the subnet
notifies the source Host by sending it a special control
message known as Ready for Next Message (or RFNM) ,
which identifies the newly unblocked link. The source
Host may utilize its connection into the subnet to
tlransmit messages over other links, while waiting to

The Interface 1\1essage Processor 553

send messages on the blocked links. Up to 63 separate
outgoing links may exist at any Host site. When giving
the subnet a message, the Host- specifies the destina­
tion Host and a link number in the first 32 bits of the
message (known as the leader). The IMPs then attend
to route selection, delivery, and notification of receipt.
This use of links and RFNMs also provides for I1\1P­
to-Host delivery of sequences of messages in proper
order. Because the subnet allows only one message at
a time on a given link, Hosts never receive messages
out of sequence.

Host-IMP interfacing

Each IMP will initially service a single Host. How­
ever, we have made provision (both in the hardware
and software) for the IMP to service up to four Hosts,
with a corresponding reduction in the number of per­
mitted phone line connections. Connecting an IMP to
a wide variety of different Hosts requires a hardware
interface, some part of which must be custom tailored
to each Host. We decided, therefore, to partition the
interface such that a standard portion would be built
into the IMP, and would be identical for all Hosts,
while a special portion of the interface would be unique
to each Host. The interface is designed to allow mes­
sages to flow in both directions at once. A bit serial
interface was designed partly because it required fewer
lines for electrical interfacing and was, therefore, less
expensive, and partly to accommodate conveniently
the variety of word lengths in the different Host com­
puters. The bit rate requirement on the Host line is
sufficiently low that parallel transfers are not necessary.

The Host interface operates asynchronously, each
data bit being passed across the interface via a Ready
For Next Bit/There's Your Bit handshake procedure.
This technique permits the bit rate to adjust to the
rate of the slower member of the pair and allows
necessary interruptions, when words must be stored
into or retrieved from memory. The IMP introduces
between bits a (manually) adjustable delay that limits
the maximum data rate; at present, this delay is set to
10 f.,Lsec. Any delay introduced by the Host in the
handshake procedure further slows the rate.

Sys tern. failure

Considerable attention has been given to the possible
effects on a Host of system failures in the subnet.
Minor system failures (e.g., temporary line failures)
will appear to the Hosts only in the form of reduced
rate of service. Catastrophic failures may, however,
result in the loss of messages or even in the loss of

From the collection of the Computer History Museum (www.computerhistory.org)

554 Spring Joint Computer Conference, 1970

HEADER

. l\cONTROL! SOURCE ILINK , ~
\ I
\ I
\ I
\ ,
\ I LEADER

LEADER

~RESERVEDFOR
~ IMP USE

Figure 3-Messages and packets

subnet communication. IMPs inform a Host of all
relevant system failures. Additionally, should a Host
computer go down, the information is propagated
throughout the sub net to all IMPs so they may notify
their local Host if it attempts to send a message to
that Host.

Specific subnet design

The overriding consideration that guided the subnet
design was reliability. Each IMP must operate unat­
tended and reliably over long periods with minimal
down time for maintenance and repair. We were con­
vinced that it was important for each IMP in the
subnet to operate autonomously, not only indepen­
dently of Hosts, but insofar as possible from other
IMPs as well; any dependency between one IMP
and another would merely broaden the area jeopardized
by one IMP's failure. Th~ need for reliability and
autonomy bears directly upon the form of subnet
communication. This section describes the process of
message communication within the subnet.

Message handling

Hosts communicate with each other via a sequence
of messages. An IMP takes in a message from its Host
computer in segments, forms these segments into
packets (whose maximum size is approximately 1000
bits), and ships the packets separately into the net­
work. The destination IMP reassembles the packets
and delivers them in sequence to the receiving Host,
who obtains them as a single unit. This segmentation
of a message during transmission is completely in-

visible to the Host computers. Figures 3, 4, and 5
illustrate aspects of message handling.

The transmitting Host attaches an identifying
leader to the beginning of each message. The IMP
forms a header by adqing further information for
network use and attaches this header to each packet
of the message.

Each packet is individually routed from IMP-to­
IMP through the network toward the destination. At
each IMP along the way, the transmitting hardware
generates initial and terminal framing characters and
parity check digits that are shipped with the packet
and are used for error detection by the receiving hard­
ware of the next IMP.

Errors in transmission can affect a packet by de­
stroying the framing and/or by modifying the data
content. If the framing is disturbed in any way, the
packet either will not be recognized or will be rejected
by the receiver. In addition, the check digits provide
protection against errors that affect only the data.
The check digits can detect all patterns of four or
fewer errors occurring within a packet, and any single
error burst of a length less than twenty-four bits. An
overwhelming majority of all other possible errors (all
but about one in 224) are also detected. Thus, the
mean time between undetected errors in the subnet
should be on the order of years.

As a packet moves through the subnet, each IMP
stores the packet until a positive acknowledgment is
returned from the succeeding IMP. This acknowledg­
ment indicates that the message was received without
error and was accepted. Once an IMP has accepted a
packet and returned a positive acknowledgment, it
holds onto that packet tenaciously until it in turn
receives an acknowledgment from the succeeding
IMP. Under no circumstances (except for Host or
IMP malfunction) will an IMP discard a packet after
it has generated a positive acknowledgment. However,
an IMP is always free to refuse a packet by simply
not returning a positive acknowledgment. It may do
this for any of several reasons: the packet may have

PACKET PACKET

ACKI ACK 2 ------- -------
IMP READY FOR IMP READY FOR

NEXT MESSAGE NEXT MESSAGE

__ ~C.!!_ _ _A£.K.l_

Figure 4-RFNMs and acknowledgments

From the collection of the Computer History Museum (www.computerhistory.org)

been received in error, the IMP may be busy, the IMP
buffer storage may be temporarily full, etc.

At the transmitting IMP, such discard of a packet
is readily detected by the absence of a returned ac­
knowledgment within a reasonable time interval
(e.g., 100 msec). Such packets are retransmitted,
perhaps along a different route. Acknowledgments
themselves are not acknowledged, although they are
error checked in the usual fashion. Loss of an acknowl­
edgment results in the eventual retransmission of the
packet; the destination IMP sorts out the resulting
duplication by using a message number and a packet
number in the header.

The packets of a message arrive at the destination
IMP, possibly out of order, where they are reassem­
bled. The header is then stripped off each packet and
a leader, identifying the source Host and the link,
followed by the reassembled message is then delivered
to the destination Host as a single unit. See Figure 3.

Routing algorithIn

The routing algorithm directs each packet to its
destination along a path for which the total estimated
transit time is smallest. This path is not determined
in advance. Instead, each IMP individually decides
onto which of its output lines to transmit a packet
addressed to another destination. This selection is
made by a fast and simple table lookup procedure.
For each possible destination, an entry in the table
designates the appropriate next leg. These entries
reflect line or IMP trouble, traffic congestion, and
current subnet connectivity. This routing table is
updated every halfsecond as follows:

Each IMP estimates the delay it expects a packet to
encounter in reaching every possible destination over
each of its output lines. It selects the minimum delay
estimate for each destination and periodically (about
twice a second) passes these estimates to its immediate
neighbors. Each IMP then constructs its own routing
table by combining its neighbors' estimates with its
own estimates of the delay to that neighbor. The
estimated delay to each neighbor is based upon both
queue lengths and the recent performance of the
connecting communication circuit. For each destina­
tion, the table is then made to specify that selected
output line for which the sum of the estimated delay
to the neighbor plus the neighbor's delay to the desti­
nation is smallest.

The routing table is consistently and dynamically
updated to adjust for changing conditions in the
network. The system is adaptive to the ups and downs
of lines, IMPs, and congestion; it does not tequire the

The Interface l\lessage Processor 555

START END ERROR
F~G FR~

~ SPARE BITS

Figure 5-Format of packet on phone line

IJJIP to know the topology of the network. In particular,
an IMP need not even know the identity of its im­
mediate neighbors. Thus, the leased circuits could be
reconfigured to a new topology without requiring any
changes to the IMPs.

Subnet failures

The network is designed to be largely invulnerable
to circuit or IMP failure as well as to outages for
maintenance. Special status and test messages are
employed to help cope with various failures. In the
absence of regular packets for transmission over a
line, the IMP program transmits special hello packets
at half-second intervals. The acknowledgment for a
hello packet is an I heard you packet.

A dead line is defined by the sustained absence
(approximately 2.5 seconds) on that line of either
received regular packets or acknowledgments; no
regular packets will be routed onto a dead line, and
any packets awaiting transmission will be rerouted.
Routing tables in the network are adjusted automati­
cally to reflect the loss. We require acknowledgment
of thirty consecutive hello packets (an event which
consumes at least 15 seconds), before a dead line is
defined to be alive once again.

A dead line may reflect trouble either in the com­
munication facilities or in the neighboring IMP itself.
Normal line errors caused by dropouts, impulse noise,
or other conditions should not result in a dead line,
because such errors typically last only a few milli­
seconds, and only occasionally as long as a few tenths
of a second. Therefore, we expect that a line will be
defined as dead only when serious trouble conditions
occur. If dead lines eliminate all routes between two
IMPs, the IMPs are said to be disconnected and each

From the collection of the Computer History Museum (www.computerhistory.org)

,556 Spring Joint Computer Conference, 1970

of these IMPs will discard messages destined for the
other. Disconnected IMPs cannot be rapidly detected
from the delay estimates that arrive from neighboring
IMPs. Consequently, additional information is trans­
mitted between neighboring IMPs to help detect this
condition. Each IMP transmits to its neighbors the
length of the shortest existing path (i.e., number of
IMPs) from itself to each destination. To the smallest
such received number per destination, the IMP adds
one. This incremented number is the length of the
shortest path from that IMP to the destination. If
the length ever exceeds the number of network nodes,
the destination IMP is assumed to be unreachable
and therefore disconnected.

Messages intended for dead Hosts (which are not
the same as dead IMPs) cannot be delivered; there­
fore, these messages require special handling to avoid
indefinite circulation in the network and spurious
arrival at a later time. Such messages are purged
from the network either at the source IMP or at the
destination IMP. Dead Host information is regularly
transmitted with the routing information. A Host
computer is notified about another dead Host only
when attempting to send a message to that Host.

An IMP may detect a major failure in one of three
ways: (1) A packet expected for reassembly of a multi­
ple packet message does not arrive. If a message is
not fully reassembled in 15 minutes, the system pre­
sumes a failure. The message is discarded by the
destination IMP and both the source IMP and the
source Host are notified via a special RFNM. (2) The
Host does not take a message from its IMP. If the
Host has not taken a message after 15 minutes, the
system presumes that it will never take the message.
Therefore, as in the previous case, the message is
discarded and a special RFNM is returned to the
source Host. (3) A link is never unblocked. If a link
remains blocked for longer than 20 minutes, the sys­
tem again presumes a failure; the link is then unblocked
and an error message is sent to the source Host. (This
last time interval is slightly longer than the others so
that the failure mechanisms for the first two situations
will have a chance to operate and unblock the link.)

Reliability and recovery procedures

For higher system reliability, special attention was
placed on intrinsic reliability, hardware test capabili­
ties, hardware/software failure recovery techniques,
and proper administrative mechanisms for failure
management.

. To improve intrinsic reliability, we decided to rug­
gedize the IMP hard,,~are, thus incurring an approxi-

mately ten percent hardware cost penalty. For ease
in maintenance, debugging, program revision, and
analysis of performance, all IMPs are as similar as
possible; the operational program and the hardware are
nearly identical in all IMPs.

To improve hardware test capabilities, we built
special crosspatching features into the IMP's interface
hardware; these features allow program-controlled
connection of output lines to corresponding input lines.
These crosspatching features have been invaluable in
testing IMPs before and during field installation, and
they should continue to be very useful when troubles
occur in the operating network. These hardware test
features are employed bya special hardware test
program and may also be employed by the operational
program when a line difficulty occurs.

The IMP includes a 512-word block of protected
memory that secures special recovery programs. An
IMP can recover from an IMP failure in two ways: (1)
In the event of power failure, a power-fail interrupt
permits the IMP to reach a clean stop before the
program is destroyed. When power returns, a special
automatic restart feature turns the IMP back on and
restarts the program. (We considered several possi­
bilities for handling the packets found in an IMP
during a power failure and concluded that no plan to
salvage the packets was both practical and foolproof.
For example, we cannot know whether the packet in
transmission at the time of failure successfully left
the machine before the power failed. Therefore, we
decided simply to discard all the packets and restart
the program.) (2) The second recovery mechanism is a
"watchdog timer", which transfers control to pro­
tected memory whenever the program neglects this
timer for about one minute. In the event of such
transfer, the program in unprotected memory is pre­
sumed to be destroyed (either through a hardware
transient or a software failure). The program in pro­
tected memory sends a reload request down a phone
line selected at random. The neighboring IMP responds
by sending a copy of its whole program back on the
phone line. A normal IMP would discard this message
because it is too long, but the recovering IMP can use
it to reload its program.

Everything unique to a particular IMP must thus
reside in its protected memory. Only one register
(containing the IMP number) currently differs from
IMP-to-IMP. The process of reloading, which requires
a few seconds, can be tried repeatedly until successful;
however, if after several minutes the program has not
resumed operation, a later phase of the watchdog
timer shuts off all power to the IMP.

In addition to providing recovery mechanisms for
both network and IMP failures, we have incorporated

From the collection of the Computer History Museum (www.computerhistory.org)

into the subnet a control center that monitors network
status and handles trouble reports. The control center,
located at a network node, initiates and follows up
any corrective actions necessary for proper subnet
functioning. Furthermore, this center controls and
schedules any modifications to the subnet.

In trospection

Because the network is experimental in nature,
considerable effort has been allocated to developing
tools whereby the network can supply measures of
its own performance. The operational IMP program is
capable of taking statistics on its own performance on
a regular basis; this function may be turned on and
off remotely. The various kinds of resulting statistics,
which are sent via the network to a selected Host for
analysis, include "snapshots", ten-second summaries,
and packet arrival times. Snapshots are summaries of
the internal status of queue lengths and routing in­
formation. A synchronization procedure allows these
snapshots, which are taken every half second, to occur
at roughly the same time in all network IMPs; a Host
receiving such snapshot messages could presumably
build up an instantaneous picture of overall network
status. Ten-second summaries include such IMP­
generated statistics as the number of processed messages
of each kind, the number of retransmissions, the traffic
to and from the local Host, and so forth; this statistical
data is sent to a selecte.~ Host every ten seconds. In
addition, a record of actual packet arrival times on
modem lines allows for the modeling of line traffic.
(As part of its research activity, the group at UCLA is
acting as a network measurement center; thus, sta­
tistics for analysIs will normally be routed to the
UCLA Host.)

Perhaps the most powerful capability for network
introspection is tracing. Any Host message sent into
the network may have a "trace bit" set in the leader.
Whenever it processes a packet from such a message,
the IMP keeps special records of what happens to
that packet-e.g., how long the packet is on various
queues, when it comes in and leaves, etc. Each IMP
that handles the traced packet generates special trace
report messages that are sent to a specified Host; thus,
a complete analysis of what has happened to that
message can be made. When used in an orderly way,
this tracing facility will aid in understanding at a very
detailed level the behavior of routing algorithms and
the behavior of the network under changing load
conditions.

The Interface l\1essage Processor 557

Flexibili ty

Flexibility for modifications in IMP usage has been
provided by severa(built-in arrangements: (1) pro­
vision within the existing cabinet for an additional
4K core bank; (2) modularity of the hardware inter­
faces; (3) provision for operation with data circuits of
widely different rates; (4) a program organization
involving many nearly self-contained subprograms;
and (5) provision for Host-unique subprograms in the
IMP program structure.

This last aspect of flexibility presents a somewhat
controversial design choice. There are many advantages
to keeping all IMP software nearly identical. Because
of the experimental nature of the network, however,
we do not yet know whether this luxury of identical
programs will be an optimal arrangement. Several
potential applications of "Host-unique" IMP software
have been considered-e.g., using ASCII conversion
routines in each IMP to establish a "Network ASCII"
and possibly to simplify the protocol problems of each
Host. As of now; the operational IMP program in­
cludes a structure that permits unique software plug-in
packages at each Host site, but no plug-ins have yet
been constructed.

THE HARDWARE

We selected a Honeywell DDP-516 for the IMP
processor because we wanted a machine that could
easily handle currently anticipated maximum traffic­
and that had already been proven in the field. We
considered only economic machines with fast cycle
times and good instruction sets. Furthermore, we
needed a machine with a particularly good I/O capa­
bility and that was available in a ruggedized version.
The geographical proximity of the supplier to BBN
was also a consideration.

The basic machine has a 16-bit word length and a
O.96-,usec memory cycle. The IMP version is packaged
in a single cabinet, and includes a 12K memory, a set
of 16 multiplexed channels (which implement a 4-cycle
data break), a set of 16 priority interrupts, a 100-,usec
clock, and a set of programmable status lights. Also
packaged within this cabinet are special modular
interfaces for connecting the IMP to phone line
modems and to Host computers; these interfaces use
the same kind of 1 MHz and 5 MHz DTL packs from
which the main machine is constructed. In addition, a
number of features that have been incorporated make
the IMP somewhat resilient to a variety of failures.

Teletypes and high-speed paper tape readers which
are attached to the IMPs are used only for mainte-

From the collection of the Computer History Museum (www.computerhistory.org)

558 Spring Joint Computer Conference, 1970

Figure 6-The IMP

nance, debugging, and system modification; in normal
operation, the IMP runs without any moving parts
except fans. Within the cabinet, space has been re­
served for an additional 4K memory. Figure 6 is a
picture of an IMP, and Figure 7 shows its configura­
tion.

Ruggedization of computer hardware for use in
friendly environments is somewhat unusual; however,
we felt that the considerable difficulty that IMP
failures can cause the network justified this step.
Although the ruggedized unit is not fully "qualified"
to MIL specs, it does have greater resistance to tem­
perature variance, mechanical shock and vibration,
radio frequency interference, and power line noise.
Weare confident that this ruggedization will increase
the mean time to failure.

Modular Host and modem interfaces allow an IMP
to be individually configured for each network node.
The modularity, however, does not take the form of
pluggable units and, except for the possibility of
adding interfaces into reserved frame space, recon-

figuration is impractical. Various configurations allow
for up to two Hosts and five modems, three Hosts and
four modems, etc. Each modem interface requires
approximately one-fourth the amount of logic used in
the C.P.V. The Host interface is somewhat smaller
(about one-sixth of the C.P.V.).

Interfaces to the Host and to the modems have
certain common characteristics. Both are full duplex,
both may be crosspatched under program control to
test their operation, and both function in the same
general manner. To send a packet, the IMP program
sets up memory pointers to the packet and then
activates the interface via a programmable control
pulse. The interface takes successive words from the
memory using its assigned output data channel and
transmits them bit-serially (to the Host or to the
modem). When the memory buffer has thus been
emptied, the interface notifies the program via an
interrupt that the job has been completed. To receive
information, the program first sets pointers to the
allocated space in the memory into which the informa­
tion is to flow. Vsing a control pulse it then readies
the interface to receive. When information starts to
arrive (here again bit-serially), it is assembled into
16-bit words and stored into the IMP memory. When
either the allocated memory space is full or the end of
the data train is detected, the interface notifies the
program via an interrupt.

The modem interfaces deal with the phone lines in
terms of 8-bit characters; the interfaces idle by sending
and receiving a sync pattern that keeps them in charac­
ter sync. Bit sync is maintained by the modems them­
selves, which provide both transmit .and receive clock­
ing signals to the interfaces. When the program initiates

12 K MEMORY
(16 BIT WORD

O. 96~s)

100 ~s CLOCK

WATCHDOG TIMER

STATUS LIGHTS

pn~ER FAIL/
AUTO-RESTART

Figure 7-IMP configuration

From the collection of the Computer History Museum (www.computerhistory.org)

transmission, the hardware first transmits a pair of
initial framing characters (DLE, STX). Next, the
text of the packet is taken word by word from the
memory and shifted serially onto the phone line. At
the end of the data, the hardware generates a pair of
terminal framing characters (DLE, ETX) and shifts
them onto the phone line. After the terminal framing
characters, the hardware generates and transmits 24
check bits. Finally, the interface returns to idle (sync)
mode.

The hardware doubles any DLE characters within
the binary data train (that is, transmits them twice),
thereby permitting the receiving interface hardware to
distinguish them from the terminal framing characters
and to remove the duplicate. Transmitted packets
are of a known maximum size; therefore, any overflow
of input buffer length is evidence of erroneous trans-:,
mission. Format errors in the framing also register as
errors. Check bits are computed from the received
data and compared with the received check bits to
detect errors in the text. Any of these errors set a
flag and cause a program interrupt. Before processing
a packet, the program checks the error flag to deter­
mine whether the packet was received correctly.

IMP SOFTWARE

Implementation of the IMPs required the develop­
ment of a sophisticated operational computer program
and the development of several auxiliary programs for
hardware tests, program construction, and debugging.
This section discusses in detail the design of the opera­
tional program and briefly describes the auxiliary
software.

Operational program

The principal function of the operational program
is the processing of packets. This processing includes
segmentation of Host messages into packets for routing
and transmission, building of headers, receiving,
routing and transmitting of store and forward packets,
retransmitting of unacknowledged packets, reassem­
bling received packets into messages for transmission
to the Host, and generating of RFNMs and acknowl­
edgments. The program also monitors network status,
gathers statistics, and performs on-line testing. This
real-time program is an efficient, interrupt-driven,
involute machine language program that occupies
about 6000 words of memory. It was designed, con­
structed, and debugged over a period of about a year
by three programmers.

The entire program is composed of twelve func-

The Interface Message Processor 559

1 PAGE = 512 WORDS

~BUFFER SPACE

~PROTECTED PAGE

Figure 8-Map of core storage

tionally distinct pieces; each piece occupies no more
than one or two pages of core (512 words per page).
These programs communicate primarily through com­
mon registers that reside in page zero of the machine
and that are directly addressable from all pages of
memory. A map of core storage is shown in Figure 8.
Seven of the twelve programs are directly involved in
the flow of packets through the IMP: the task program
performs the major portion of the packet processing,
including the reassembly of Host messages; the modem
programs (IMP-to-Modem and Modem-to-IMP)
handle interrupts and resetting of buffers for the
modem channels; the Host programs (IMP-to-Host
and Host-to-IMP) handle interrupts and resetting of
buffers for the Host channels, build packet headers
during input, and construct RFNMs that are returned
to the source Host during output; the time-out program
maintains a software clock, times out unacknowledged
packets for retransmission, and attends to infrequent
events; the link program assigns and verifies message
numbers and keeps track of links. A background loop

From the collection of the Computer History Museum (www.computerhistory.org)

560 Spring Joint Computer Conference, 1970

TABLE I-Program Data Structures

5000 WORDS-MESSAGE BUFFER STORAGE
120 WORDS-QUEUE POINTERS
300 WORDS-TRACE BLOCKS
100 WORDS-REASSEMBLY BLOCKS
150 WORDS-ROUTING TABLES
400 WORDS-LINK TABLES
300 WORDS-STATISTICS TABLES

contains the remaining five programs and deals with
initialization, debugging, testing, statistics gathering
and tracing. After a brief description of data struc­
tures, we will discuss packet processing in some detail.

Buffer allocation, queues, and tables

The major system data structures (see Table I)
consist of buffers and tables. The buffer storage space
is partitioned into about 70 fixed length buffers, each
of which is used for storing a single packet. An unused
buffer is chained onto a free buffer list and is removed
from this list when it is needed to store an incoming
packet. A packet, once stored in a buffer, is never
moved. After a packet has been successfully passed
along to its Host or to another IMP, its buffer is re­
turned to the free list. The buffer space is partitioned
in such a way that each process (store and forward,
traffic, Host traffic, etc.) is always guaranteed some
buffers. For the sake of program speed and simplicity,
no attempt is made to retrieve the space wasted by
partially filled buffers.

In handling store and forward traffic, all processing
is on a per packet basis. Further, although traffic to
and from Hosts is composed of messages, the IMP
rapidly converts to dealing with packets; the Host
transmits a message as a single unit but the IMP
takes it one buffer at a time. As each buffer is filled,
the program selects another buffer for input until the
entire message has been provided for. These successive
buffers will, in general, be scattered throughout the
memory. An equivalent inverse process occurs on
output to the Host after all packets of the message
have arrived at the destination IMP. No attempt is
ever made to collect the packets of a message into a
contiguous portion of the memory.

Buffers currently in use are either dedicated to an
incoming or an outgoing packet, chained on a queue
awaiting processing by the program, or being processed.
Occasionally, a buffer may be simultaneously found on
two queues; this situation can occur when a packet is
\vaiting on one queue to be forwarded and on another
to be acknowledged.

There are four principal types of queues:

Task: Packets received on Host channels are placed
on the Host task queue. All received acknowledg­
ments, dead Host and routing information, I heard
you and hello packets are placed on the system task
queue; all other packets from the modems are placed
on the modem task queue. The program services the
system task queue first, then the Host task queue, and
finally the modem task queue.

Output: A separate output queue is constructed for
each modem channel and each Host channel. Each
modem output queue is subdivided into an acknowl­
edgment queue, a priority queue, a RFNM queue,
and a regular message queue, which are serviced in
that order. Each Host output queue is subdivided into
a control message queue, a priority queue, and a
regular message queue, which are also serviced in the
indicated order.

Sent: A separate queue for each modem channel con­
tains packets that have already been transmitted on
that line but for which no acknowledgment has yet
been received.

Reassembly: The reassembly queue contains those
packets that are being reassembled into messages for
the Host.

Tables in core are allocated for the storage of queue
pointers, for trace blocks, for reassembly information,
for statistics, and for links. Most noteworthy of these
is the link table, which is used at the source IMP for
assignment of message numbers and for blocking and
unblocking links, and at the destination IMP to
verify message numbers for sequence control.

Packet flow and program. structure

Figure 9 is a schematic drawing of packet process­
ing; the processing programs are described below.

The H ost-to-I M P routine (H ~ I) handles messages
being transmitted from the local site. The routine
uses the leader to construct a header that is prefixed
to each packet of the message. It also creates a link
for the message if necessary, blocks the link, puts the
packets of the message on the Host task queue for
further processing by the task routine, and triggers
the programmable task interrupt. The routine then
acquires a free buffer and sets up a new input. The
r~)Utine tests a hardware trouble indicator, verifies the
message format, and checks whether or not the destina­
tion is dead, the link table is full, or the link blocked.
The routine is serially reentrant and services all Hosts
connected to the IMP.

From the collection of the Computer History Museum (www.computerhistory.org)

The lJ!Jodem-to-IMP routine (M -? I) handles inputs
from the modems. This routine consists of several
identical routines, one for each modem channel. (Such
duplication is useful to obtain higher speed.) This
routine sets up an input buffer (normally obtained
from the free list), places the received packet on the
appropriate task queue, and triggers the programmable
task interrupt. Should no free buffers be available for
input, the buffer at the head of the modem task queue
is preempted. If the modem task queue is also empty,
the received packet is discarded by setting up its
buffer for input. However, a sufficient number of free
buffers are specifically reserved to assure that received
acknowledgments, routing packets, and the like are
rarely discarded.

The task routine uses the header information to
direct packets to their proper destination. The task
routine is driven by the task interrupt, which is set
whenever a packet is put on a task queue. The task
routine routes packets from the Host task queue onto
an output queue determined from the routing algorithm.

For each packet on the modem task queue, the task
routine first determines whether sufficient buffer space
is available. If the IMP has a shortage of store and
forward buffers, the buffers on the modem task queue
are simply returned to the free list without further
processing. Normally, however, an acknowledgment
packet is constructed and put near the front of the
appropriate modem output queue. The destination of
the packet is then inspected. If the packet is not for
the local site, the routing algorithm selects a modem
output queue for the packet. If a packet for the local
site is a RFNM, the corresponding link is unblocked
and the RFNM is put on a queue to the Host. If the
packet is not a RFNM, it is joined with others of the

\

"
TE~ __ ...

/.

I
I
\

I TTY

D'QUEUE

.... - , ,
I \

\). PROG,RAM

---'
•• CHOICE
~ DERIVED t . PACKET

Figure 9-Internal packetftow

The Interface J\1essage Processor 561

same message on the reassembly queue. Whenever a
message is completely reassembled, the packets of
the message are put on an output queue to the Host
for processing by the IMP-to-Host routine.

In processing the system task queue, the task routine
returns to the free list those buffers from the sent
queue that have been referenced by acknowledgments.
Any packets skipped over by an acknowledgment are
designated for retransmission. Routing, I heard you,
and hello packets are processed In a straightforward
fashion.

The IlJ!JP-to-lJ!J odem routine (I -? M) transmits
successive packets from the Modem output queue.
After completing the output, this routine places any
packet requiring acknowledgment on the sent queue.

The IMP-to-Host routine (I -? H) sets up successive
outputs of packets on the Host output queues and
constructs a RFNM for each non-control message
delivered to a Host. RFNM packets are returned to
the system via the Host task queue.

The time-out routine is started every 25.6 msec
(called the time-out period) by a clock interrupt.
The routine has three sections: the fast time-out
routine, which "wakes up" any Host or modem inter­
rupt routine that has languished (for example, when
the Host input routine could not immediately start a
new input because of a shortage in buffer space); the
middle time-out routine, which retransmits any packets
that have been too long on a modem sent queue; and
the slow time-out routine, which marks lines as alive
or dead, updates the routing tables and does long
term garbage collection of queues and other data
structures. (For example, it protects the system from
the cumulative effect of such failures as a lost packet
of a multiple packet message, where buffers are tied
up in message reassembly.) It also deletes links auto­
matically after 15 seconds of disuse, after 20 minutes
of blocking, or when an IMP goes down.

These three routines are executed in the following
pattern:

FFFF FFFF FFFF FFFF FFFF FFFF ...

M M M M M

S

and, although they run off a common interrupt, are
constructed to allow faster routines to interrupt slower
ones should a slower routine not complete execution
before the next time-out period.

The link routine enters, examines, and deletes entries
from the link table. A table containing a separate
message number entry for many links to every possible
Host would be prohibitively large. Therefore, . the
table contains entries only for each of 63 total out-

From the collection of the Computer History Museum (www.computerhistory.org)

562 Spring Joint Computer Conference, 1970

going links at any Host site. Hashing is used to speed
accessing of this table, but the link program is still
quite costly; it uses about ten percent of both speed
and space in a conceptually trivial task.

Initialization and background loop

The IMP program starts in an initialization section
that builds the initial data structures, prepares for
inputs from modem and Host channels, and resets all
program switches to their nominal state. The program
then falls into the background loop, which is an end­
lessly repeated series of low-priority subroutines that
are interrupted to handle normal traffic.

The programs in the IMP background loop perform
a variety of functions: TTY is used to handle the IMP
Teletype traffic; DEBUG, to inspect or change IMP
core memory; TRACE, to transmit collected informa­
tion about traced packets; STATISTICS, to take and
transmit network and IMP statistics; P ARAMETER­
CHANGE, to alter the values of selected IMP pa­
rameters; and DISCARD, to throwaway packets.
Selected Hosts and IMPs, particularly the Network
Measurement Center and the Network Control Center,
will find it necessary or useful to communicate with
one or more of these background loop programs. So
that these programs may send and receive messages
from the network, they are treated as "fake Hosts".
Rather than duplicating portions of the large IMP-to­
Host and Host-to-IMP routines, the background loop
programs are treated as if they were Hosts, and they
can thereby utilize existing programs. The "For IMP"
bit or the "From IMP" bit in the leader indicates
that a given message is for or from a fake Host program
in the . IMP. Almost all of the background loop is
devoted to running these programs.

The TTY program assembles characters from the
Teletype into network messages and decodes network
messages into characters for the Teletype; TTY's
normal message destination is the DEBUG program
at its own IMP; however, TTY can be made to com­
municate with any other IMP Teletype, any other
IMP DEBUG program or any Host program with
compatible format.

The DEBUG program permits the operational·
program to be inspected and changed. Although its
normal message source is the TTY program at its
own IMP, DEBUG will respond to a message of the
correct format from any source. This program is
normally inhibited from changing the operational
IMP program; local operator intervention is required to
activate the program's full power.

The STATISTICS program collects measurements

about network operation and periodically transmits
them to the Network Measurement Center. This
program sends but does not receive messages. STA­
TISTICS has a mechanism .for collecting measure­
ments over 10-second intervals and for taking half­
second snapshots of IMP queue lengths and routing
tables. It can also generate artificial traffic to load
the network. When turned on, STATISTICS uses 10
to 20 percent of the machine capacity and generates a
noticeable amount of phone line traffic.

Other programs in the background loop drive local
status lights and operate the parameter change routine.
A thirty-two word parameter table controls the opera­
tion of the TRACE and STATISTICS programs and
includes spares for expansion; the PARAMETER­
CHANGE program accepts messages that change
these parameters.

Control organization

It is characteristic of the IMP system that many
of the main programs are entered both as subroutine
calls from other programs and as interrupt calls from
the hardware. The resulting control structure is shown
in Figure 10. The programs are arranged in a priority
order; control passes upward in the chain whenever a
hardware interrupt occurs or the current program
decides that the time has come to run a higher priority
program, and control passes downward only when
the higher priority programs are finished. No program
may execute either itself or a lower priority program;
however, a program may freely execute a higher pri­
ority program. This rule is similar to the usual rules
concerning priority interrupt routines.

In one important case, however, control must pass
from a higher priority program to a lower priority
program-namely, from the several input routines to
the TASK routine. For this special case, the com­
puter hardware was modified to include a low-priority
hardware interrupt that can De set by the program.
When this interrupt has been honored (i.e., when all
other interrupts have been serviced), the TASK
routine is executed. Thus, control is directed where
needed without violating the priority rules.

Some routines must occasionally wait for long inter­
vals of time, for example, when the Host-to-IMP
routine must wait for a link to unblock. Stopping the
whole system would be intolerable; therefore, should
the need arise, such a routine is dismissed, and the
TIMEOUT routine will later transfer control to the
waiting routine.

The control structure and the partition of responsi­
bility among various programs achieve the following

From the collection of the Computer History Museum (www.computerhistory.org)

timing goals:

1. No program stops or delays the system while
waiting for an event.

2. The program gracefully adjusts to the situation
where the machine becomes compute-bound.

3. The Modem-to-IMP routine can deliver its
current packet to the TASK routine before the
next packet arrives and can always prepare for
successive packet inputs on each line. This
timing is critical because a slight delay here
might require retransmission of the entire packet.
To achieve this result, separate routines (one per
phone line) interrupt each other freely after new
buffers have been set up.

4. The program will almost always deliver packets
waiting to be sent as fast as they can be accepted
by the phone line.

5. Necessary periodic processes (in the time-out
routine) are always permitted to run, and do
not interfere with input-output processes.

Support software

Designing a real-time program for a small computer
with many high rate I/O channels is a specialized kind
of software problem. The operational program requires
not only unusual techniques but also extra software
tools; often the importance of such extra tools is not
recognized. Further, even when these issues are recog­
nized, the effort needed to construct such tools may be
seriously underestimated. The development of the
IMP system required the following kinds of supporting
software:

1. Programs to test the hardware.
2. Tools to help debug the system.
3. A Host simulator.
4. An efficient assembly process.

So far, three hardware test programs have been
developed. The first and largest is a complete program
for testing all the special hardware features in the
IMP. This program permits running any or all of the
modem interfaces in a crosspatched mode; it even
permits operating together several IMPs in a test
mode. The second hardware test program runs a
detailed phone line test that provides statistics on
phone line errors. The final program simulates the
modem interface check register whose complex be­
havior is otherwise difficult _to predict.

The software. debugging tools exist in two forms.
Initially we designed a simple stand-alone debugging
program with the capability to do little more than
examine and change individual core registers from the

The Interface IVlessage Processor 563

: ::T1
-+

....
-'
Q.

::E
::;
o

~

'"
~
'" :t: * CLOC K

*----1
PROGRAt·WABLE

I NTE R RUPT '---I--L ___ J

Arrows indicate that control is passed
with a subroutine call; control will
eventually return back down the arrow.
Note that the hardware interrupts and VI

the lower pri ori ty routines can both ..,
call the same programs as subroutines. ~

e
Set proqrammahle hardware interruot

Figure lO-Program control structure

console Teletype. Subsequently, we embedded a
version of the stand-alone debugging program in to
the operational program. This operational debugging
program not only provides debugging assistance at a
single location but also may be used in network testing
and network debugging.

The initial implementation of the IMP software
took place without connecting to a true Host. To
permit checkout of the Host-related portions of the
operational program, we built a "Host Simulator"
that takes input from the console Teletype and feeds
the Host routines exactly as though the input had
originated in a real Host. Similarly, output messages
for a destination Host are received by the simulator
and typed out on the console Teletype.

Without recourse to expensive additional periph­
erals, the assembly facilities on the DDP-516 are
inadequate for a large program. (For example, a listing
of the IMP program would require approximately 20
hours of Teletype output.) We therefore used other
locally available facilities to assist in the assembly
process. Specifically, we used a PDP-1 text editor to
compose and edit the programs, assembled on the

From the collection of the Computer History Museum (www.computerhistory.org)

564 Spring Joint Computer Conference, 1970

TABLE II-Transit Times And Message Rates

Minimum Maximum

SINGLE WORD MESSAGE

Transit Time
Round-trip
Max. Message Rate/Link

5 msec
10 msec

100/sec

SINGLE FULL PACKET MESSAGE

Transit Time
Round-trip
Max. Message Rate/Link

8-P ACKET MESSAGE

Transit Time
Round-trip
Max. Message Rate/Link

45 msec
50 msec
20/sec

265 msec
195 msec

5/sec

50 msec
100 msec

lO/sec

140 msec
190 msec

5/sec

360 msec
320 msec

3/sec

DDP-516, and listed the program on the SDS 940
line printer. Use of this assembly process required
minor modification of existing PDP-1 and SDS 940
support software

PROJECTED IMP PERFORMANCE

At this writing, the subnet has not yet been sub­
jected to realistic load conditions; consequently, very
little experimental data is available. However, we have
made some estimates of projected performance of the
IMP program and we describe these estimates below.

Host traffic and message delays

In the subnet, the Host-to-Host transit time and
the round-trip time (for RFNM receipt) depend upon
routing and message length. Since only one message
at a time may be present on a given link, the reciprocal
of the round-trip delay is the maximum message rate
on a link. The primary factors affecting subnet delays
are:

. Propagation delay: Electrical propagation time
in the Bell system is estimated to be about 10
J.Lsec per mile. Cross country propagation delay is
therefore about 30 msec.

• Modem transmission delay: Because bits enter
and leave an IMP at a predetermined modem bit
rate, a packet requires a modem transmission
time proportional to its length (20 J.Lsec per bit on
a 50-kilobit line).

. Queueing delay: Time spent waiting in the IMP
for transmission of previous packets on a queue.
Such waiting may occur either at an intermediate
IMP or in connection with terminal IMP trans­
missions into the destination Host.

. IMP processing delay: The time required for the
IMP program to process a packet is about 0.35
msec for a store-and-forward packet.

Because the queueing delay depends heavily upon
the detailed traffic load in the network, an estimate of
queueing delay will not be available until we gain
considerable experience with network operation. In
Table II, we show an estimate of the one-way and
round-trip transit times and the corresponding maxi­
mum message rate per link, assuming the negligible
queueing delay of a lightly loaded net. In this table,
"minimum" delay represents a short hop between
two nearby IMPs, and "maximum" delay represents a
cross-country path involving five IMPs. In all cases
the delays are well within the desired half-second
goal.

In a lightly-loaded network with a mixture of nearby
and distant destinations, an example of heavy Host
traffic into its IMP might be that of 20 links carrying
ten single-word messages per second and four more
links, each carrying one eight-packet message per
second.

Computational load

In general, a line fully loaded with short packets
will require more computation than a line with all
long packets; therefore the IMP can handle more
lines in the latter case. In Figure 11, we show a curve
of the computational utilization of the IMP as a func­
tion of message length for fully-loaded communication
lines. For example, a 50-kilobit line fully loaded in both
directions with one-word messages requires slightly
over 13 percent of the available IMP time. Since a
line will typically carry a variety of different length
packets, and each line will be less than fully loaded,
the computational load per line will actually be much
less.

Throughput is defined to be the maximum number
of Host data bits that may traverse an IMP each
second. The actual number of bits entering the IMP'
per second is somewhat larger than the throughput
because of such overhead as headers, RFNMs, and
acknowledgments. The number of bits on the lines are
still larger because of additional line overhead such
as framing and error control characters. (Each packet
on the phone line contains seventeen characters of

From the collection of the Computer History Museum (www.computerhistory.org)

overhead, nine of which are removed before the packet
enters an IMP.)

The computational limit on the IMP throughput is
approximately 700,000 bits per second. Figure 12
shows maximum throughput as a function of message
length. The difference between the throughput curve
and the line traffic curve represents overhead.

DISCUSSION

In this section we state some of our conclusions about
the design and implementation of the ARPA Network
and comment on possible future directions.

We are convinced that use of an IMP-like device is
a more sensible way to design networks than is use of
direct Host-to-Host connection. First, for the subnet
to serve a store-and-forward role, its functions must be
independent of Host computers, which may often be
down for extended periods. Second, the IMP program
is very complex and is highly tailored to the I/O struc­
ture of the DDP-516; building such complex functions
into special I/O units of each computer that might
need network connection is probably economically
inadvisable. Third, because of the desirability of
having several Host computers at a given site connect
to the network, it is both more convenient and more
economic to employ IMPs than to provide all the
network functions in each of the Host computers. The
whole notion of a network node serving a multiplexing
function for complexes of local Hosts and terminals
lends further support to this conclusion. Finally,
because we were led to a design having some inter­
IMP dependence; we found it advantageous to have
identical units at each node, rather than computers
of different manufacture.

Considering the multiplexing issue directly, it now
seems clear that individual network nodes will be
connected to a wide variety of computer and terminal
complexes. Even the initial ten-node ARPA Network

70

60 -
'J/<

.... 50
:z
-'

~ 40
I­
..:

~ 30

1\

\
\

Q.. Z
:2

01\

" o~

"' 0

IIPERCENT OF IMP CAPACITY DUE TO I
IISTORE AND FORWARD T~AFFlC. (IN AND OUT!

f'-...-. 230.4 KILOB ITS/SEC

I I !
I"--~ viOS ~ ILOB ITS/SEC

./ 50 K ILOB ITS/SEC

2 3 4 5 6
MESSAGE LENGTH (PACKETS)

Figure I1-IMP utilization

The Interface l\1essage Processor .56.5

c

1400

1300

1200

1100

1000

z 900 o
~ 800
\I)

~ 700

;;; 600
o
== 500
:.0::

400

300

200

100

./

~V

I
I 7"

if d

t
f

J
[(

0
0

LINE TRAFF IC
.".. ..A

T
~ MAX IMUM

THROUGHPUT f----.....-

~

3 4 5 6 7 10
MESSAGE LENGTH (PACKETS)

Figure I2-IMP throughput

includes one Host organization that has chosen to
submultiplex several computers via a single Host
connection to the IMP. We are now studying variants
of the IMP design that address this mUltiplexing
issue, and we also expect to cooperate with other
groups (such as at the National Physical Laboratory
in England) that are studying such multiplexing
techniques.

The increasing interest in computer networks will
bring with it an expanding interaction between com­
puters and communication circuits. From the outset,
we viewed the ARPA Network as a systems engineer­
ing problem, including the portion of the system sup­
plied by the common carriers. Although we found the
carriers to be properly concerned about circuit per­
formance (the basic circuit performance to date has
been quite satisfactory), we found it difficult to work
with the carriers cooperatively on the technical details,
packaging, and implementation of the communication
circuit terminal equipment; as a result, the present
physical installations of circuit terminal equipment
are at best inelegant and inconvenient. In the longer
run, for reasons of economy, performance, and reliabil­
ity, circuit terminal equipment probably should be
integrated more closely with computer input/output
equipment. If the carriers are unable to participate
conveniently in such integrations, we would expect
further growth of a competing circuit terminal equip­
ment industry, and more prevalent common carrier
provision of bare circuits.

Another aspect of network growth and development
is the requirement to connect different rate com­
munication circuits to IMP-like devices as a function
of the particular application. In our own IMP design,
although there are limitations on total throughput,

From the collection of the Computer History Museum (www.computerhistory.org)

566 Spring Joint Computer Conference, 1970

the IMP can be connected to carrier circuits of any
bit rate up to about 250 kilobits; similarly, the inter­
face to a Host computer can operate over a wide
range of bit rates. We feel that this flexibility is very
important because the economics of carrier offerings,
as well as the us~r requirements, are subject to sur­
prisingly rapid change; even within the time period
of the present implementation, we have experienced
such changes.

At this point, we would like to discuss certain aspects
of the implementation effort. This project required
the design, development, and installation of a very
complex device in a rather short time scale. The diffi­
culty in producing a complex system is highly de­
pendent upon the number of people who are simul­
taneously involved. Small groups can achieve complex
optimizations of timing, storage, and hardware/
software interaction, whereas larger groups can seldom
achieve such optimizations on a reasonable time
scale. We chose'to operate with a very small group of
highly talented people. For example, all software,
including software tools for assembly, editing, debug­
ging, and equipment testing as well as the main opera­
tional program, involved effort by no more than four
people at any time. Since so many computer system
projects involve much larger groups, we feel it is worth
calling attention to this approach.

Turning to the future, we plan to work with the
ARPA Network project along several technical direc­
tions: (1) the experimental operation of the network
and any modifications required to tune its perfor­
mance; (2) experimental operation of the network with
higher bandwidth circuits, e.g., 230.4 kilobits; (3) a
review of IMP variants that might perform multi­
plexing functions; (4) consideration of techniques for
designing more economical and/ or more· powerful
IMPs; and (5) participation with the Host organiza­
tions in the very sizeable problem of developing tech­
niques and protocols for the effective utilization of
the network.

On a more global level, we anticipate an explosive
growth of message switched computer networks, not
just for the interactive pooling of resources, but for
the simple conveniences and economies to be obtained
for many classes of digital data communication. We
believe that the capabilities inherent in the design of
even the present subnet have broad application to
other data communication problems of government
and private industry.

ACKNOWLEDGMENTS

The ARPA Network has in large measure been the
conception of one man, Dr. L. G. Roberts of the

Advanced Research Projects Agency; we gratefully
acknowledge his guidance and encouragement. Re­
searchers at many other institutions deserve credit
for early interactions with . ARPA concerning basic
network design; in particular we would like to acknowl­
edge the insight about IMPs provided by W. A. Clark.

At BBN, many persons contributed to the IMP
project. We acknowledge the contributions of H. K.
Rising, who participated in the subnet design and
acted as associate project manager during various
phases of the project; B. P. Cosell, who participated
significantly in the software implementation; W. B.
Barker and M. J. Thrope, who participated signifi­
cantly in the hardware implementation; and T. Thatch,
J. H. Geisman, and R. C. Satterfield, who assisted
with various implementation aspects of the project.
We also acknowledge the helpful encouragement of
J. 1. Elkind and D. G. Bobrow.

Finally, . we wish to acknowledge the hardware
implementation contribution of the Computer Control
Division of Honeywell, where many individuals worked
cooperatively with us despite the sometimes abrasive
pressures of a difficult schedule.

REFERENCES

1 P BARAN
On distributed communication networks
IEEE Transactions on Communication Systems Vol CS-12
March 1964

2 P BARAN S BOEHM P SMITH
On distributed communications
Series of 11 reports Rand Corporation Santa Monica
California 1964

3 B W BOEHM R L MOBLEY
Adaptive routing techniques for distributed communication
systems
Rand Corporation Memorandum RM-4781-PR 1966

4 Initial design for interface message processors for the
ARPA computer network
Bolt Beranek and Newman Inc Report No 1763 1969

5 Specifications for the interconnection of a Host and an IMP
Bolt Beranek and Newman Inc Report No 1822 1969

6 G W BROWN J G MILLER T A KEENAN
EDUNET report of the summer study on information networks
conducted by the interuniversity communications council
John Wiley and Sons New York 1967

7 S CARR S CROCKER V CERF
HOST-HOST communication protocol in the ARPA network
Proceedings of AFIPS SJCC 1970 In this issue

8 C A CUADRA
A nnual review of information science and technology
Interscience Vol 3 Chapters 7 and 10 1968

9 D W DAVIES K A BARTLETT
R A SCANTLEBURY P T WILKINSON
A digital communication network for computers giving rapid
response at remote terminals
ACM Symposium on Operating System Principles 1967

From the collection of the Computer History Museum (www.computerhistory.org)

