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INTRODUCTION 

For many years, small groups of computers have been 
interconnected in various ways. Only recently, how­
ever, has the interaction of computers and communica­
tions become an important topic in its own right. ** In 
1968, after considerable preliminary investigation and 
discussion, the Advanced Research Projects Agency 
of the Department of Defense (ARPA) embarked on 
the implementation of a new kind of nationwide 
computer interconnection known as the ARPA N et­
work. This network will initially interconnect many 
dissimilar computers at ten ARPA-supported research 
centers with 50-kilobit common-carrier circuits. The 
network may be extended to include many other 
locations and circuits of higher bandwidth. 

The primary goal of the ARPA project is to permit 
persons and programs at one research center to access 
data and use interactively programs that exist and 
run in other computers of the network. This goal may 
represent a major step down the path taken by com­
puter time-sharing, in the sense that the computer 
resources of the various research centers are thus 
pooled and directly accessible to the entire community 
of network participants. 

Study of the technology and tariffs of available 
communications facilities showed that use of con­
ventionalline switching facilities would be economically 
and technically inefficient. The traditional method of 
routing information through the common-carrier 
switched network establishes a dedicated path for each 
conversation. With present technology, the time 
required for this task is on the order of seconds. For 

* This work was sponsored by the Advanced Research Proj·· 
ects Agency under Contract No. DARC 15-69-C-0179. 
** A bibliography of ~elevant references is included at the end of 
this paper; a more extensive list may be found in Cuadra, 1968. 
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voice communication, that overhead time is negligible, 
but in the case of many short transmissions, such as 
may occur between computers, that time is excessive. 
Therefore, ARPA decided to build a new kind of 
digital communication system employing wideband 
leased lines and message switching, wherein a path is 
not established in advance and each message carries an 
address. In this domain the project portends a possible 
major change in the character of data communica­
tion services in the United States. 

In a nationwide computer network, economic con­
siderations also mitigate against a wideband leased 
line configuration that is topologically fully connected. 
In a non-fully connected network, messages must 
normally traverse several network nodes in going from 
source to destination. The ARPA Network is designed 
on this principle and, at each node, a copy of the mes­
sage is stored until it is safely received at the following 
node. The network is thus a store and forward system 
and as such must deal with problems of routing, buffer­
ing, synchronization, error control, reliability, and 
other related issues. To insulate the computer centers 
from these problems, and to insulate the network from 
the problems of the computer centers, ARPA decided 
to place identical small processors at each network 
node, to interconnect these small processors with 
leased common-carrier circuits to form a subnet, and 
to connect each research computer center into the net 
via the local small processor. In this arrangement the 
research computer centers are called Hosts and the 
small processors are called Interface Message Processors, 
or IMPs. (See Figure 1.) This approach divides the 
genesis of the ARPA Network into two parts: (1) 
design and implementation of the IMP subnet, and 
(2) design and implementation of protocols and tech­
niques for the sensible utilization of the network by 
the Hosts. 

Implementation of the subnet involves two major 

From the collection of the Computer History Museum (www.computerhistory.org)



552 Spring Joint Computer Conference, 1970 

50 KILOBIT CIRCUITS 

Figure I-Hosts and IMPs 

technical activities: providing 50-kilobit common­
carrier circuits and the associated modems; and pro­
viding IMPs, along with software and interfaces to 
modems and Host computers. For reasons of economic 
and political convenience, ARPA obtained common­
carrier circuits directly through government purchas­
ing channels; AT&T (Long Lines) is the central coordi­
nator, although the General Telephone Company 
is participating at some sites and other common 
carriers may eventually become involved. In January 
1969, Bolt Beranek and Newman Inc. (BBN) began 
,york on the design and implementation of IMPs; a 
four-node test network was scheduled for completion 
by the end of 1969 and plans were formulated to 
include a total of ten sites by mid-1970. This paper 
discusses the design of the sub net and describes the 
hardware, the software, and the predicted performance 
of the IMP. The issues of Host-to-Host protocol and 
network utilization are barely touched upon; these 
problems are currently being considered by the par­
ticipating Hosts and may be expected to be a subject 
of technical interest for many years to come. 

At this time, in late 1969, the test network haR 
become an operating reality. IMPs have already been 
installed at four sites, and implementation of IMPR 
for six additional sites is proceeding. The common 
carriers have installed 50-kilobit leased service con-

necting the first four sites and are preparing to install 
circuits at six additional sites. 

The design of ~he network allows for the connection 
of additional Host sites. A map of a projected eleven­
node network is shown in Figure 2. The connections 
between the first four sites are indicated by solid lines. 
Dotted lines indicate planned connections. 

NETWORK DESIGN 

The design of the network is discussed in two parts. 
The first part concerns the relations between the 
Hosts and the subnet, and the second part concerns 
the design of the subnet itself. 

H ost-subnet considerations 

The basic notion of a subnet leads directly to a 
series of questions about the relationship between the 
Hosts and the subnet: What tasks shall be performed 
by each? What constraints shall each place on the 
other? What dependence shall the subnet have on the 
Hosts? In considering these questions, we were guided 
by the following principles: (1) The subnet should 
function as a communications system whose essential 
task is to transfer bits reliably from a source location 
to a specified destination. Bit transmission should be 
sufficiently reliable and error free to obviate the need 
for special precautions (such as storage for retrans­
mission) on the part of the Hosts; (2) The average 
transit time through the subnet should be under a 
half second to provide for convenient interactive use 
of remote computers; (3) The sub net operation should 
be completely autonomous. Since the subnet must 
function as a store and forward system, an IMP must 
not be dependent upon its local Host. The IMP must 
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Figure 2-Network map 
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continue to operate whether the Host is functioning 
properly or not and must not depend upon a Host for 
buffer storage or other logical assistance such as pro­
gram reloading. The Host computer must not in any 
way be able to change the logical characteristics of 
the sub net ; this restriction avoids the mischievous or 
inadvertent modification of the communication system 
by an individual Host user; (4) Establishment of 
Host-to-Host protocol and the enormous problem of 
planning to communicate between different computers 
should be an issue separated from the subnet design. 

Messages, links, and RFNMs 

In principle, a single transmission from one Host to 
another may range from a few bits, as with a single 
teletype character, up to arbitrarily many bits, as in a 
very long file. Because of buffering limitations in the 
subnet, an upper limit was placed on the size of an 
individual Host transmission; 8095 bits was chosen 
for the maximum transmission size. This Host unit of 
transmission is called a message. The sub net does not 
impose any pattern restrictions on messages; binary 
text may be transmitted. Messages may be of variable 
length; thus, a source Host must indicate the end of a 
message to the subnet. 

A major hazard in a message switched network is 
congestion, which can arise either due to system 
failures or to peak traffic flow. Congestion typically 
occurs when a destination IMP becomes flooded with 
incoming messages for its Host. If the flow of messages 
to this destination is' not regulated, the congestion 
will back up into the network, affecting other IMPs 
and degrading or even completely clogging the com­
munication service. To solve this problem we developed 
a quenching scheme that limits the flow of messages to 
a given destination when congestion begins to occur 
or, more generally, when messages are simply not 
getting through. 

The subnet transmits messages over unidirectional 
logical paths between Hosts known as links. (A link is 
a conceptual path that has no physical reality; the 
term merely identifies a message sequence.) The 
subnet accepts only one message at a time on a given 
link. Ensuing messages on that link will be blocked 
from entering the subnet until the source IMP learns 
that the previous message has arrived at the destina­
tion Host. When a link becomes unblocked, the subnet 
notifies the source Host by sending it a special control 
message known as Ready for Next Message (or RFNM) , 
which identifies the newly unblocked link. The source 
Host may utilize its connection into the subnet to 
tlransmit messages over other links, while waiting to 
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send messages on the blocked links. Up to 63 separate 
outgoing links may exist at any Host site. When giving 
the subnet a message, the Host- specifies the destina­
tion Host and a link number in the first 32 bits of the 
message (known as the leader). The IMPs then attend 
to route selection, delivery, and notification of receipt. 
This use of links and RFNMs also provides for I1\1P­
to-Host delivery of sequences of messages in proper 
order. Because the subnet allows only one message at 
a time on a given link, Hosts never receive messages 
out of sequence. 

Host-IMP interfacing 

Each IMP will initially service a single Host. How­
ever, we have made provision (both in the hardware 
and software) for the IMP to service up to four Hosts, 
with a corresponding reduction in the number of per­
mitted phone line connections. Connecting an IMP to 
a wide variety of different Hosts requires a hardware 
interface, some part of which must be custom tailored 
to each Host. We decided, therefore, to partition the 
interface such that a standard portion would be built 
into the IMP, and would be identical for all Hosts, 
while a special portion of the interface would be unique 
to each Host. The interface is designed to allow mes­
sages to flow in both directions at once. A bit serial 
interface was designed partly because it required fewer 
lines for electrical interfacing and was, therefore, less 
expensive, and partly to accommodate conveniently 
the variety of word lengths in the different Host com­
puters. The bit rate requirement on the Host line is 
sufficiently low that parallel transfers are not necessary. 

The Host interface operates asynchronously, each 
data bit being passed across the interface via a Ready 
For Next Bit/There's Your Bit handshake procedure. 
This technique permits the bit rate to adjust to the 
rate of the slower member of the pair and allows 
necessary interruptions, when words must be stored 
into or retrieved from memory. The IMP introduces 
between bits a (manually) adjustable delay that limits 
the maximum data rate; at present, this delay is set to 
10 f.,Lsec. Any delay introduced by the Host in the 
handshake procedure further slows the rate. 

Sys tern. failure 

Considerable attention has been given to the possible 
effects on a Host of system failures in the subnet. 
Minor system failures (e.g., temporary line failures) 
will appear to the Hosts only in the form of reduced 
rate of service. Catastrophic failures may, however, 
result in the loss of messages or even in the loss of 
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Figure 3-Messages and packets 

subnet communication. IMPs inform a Host of all 
relevant system failures. Additionally, should a Host 
computer go down, the information is propagated 
throughout the sub net to all IMPs so they may notify 
their local Host if it attempts to send a message to 
that Host. 

Specific subnet design 

The overriding consideration that guided the subnet 
design was reliability. Each IMP must operate unat­
tended and reliably over long periods with minimal 
down time for maintenance and repair. We were con­
vinced that it was important for each IMP in the 
subnet to operate autonomously, not only indepen­
dently of Hosts, but insofar as possible from other 
IMPs as well; any dependency between one IMP 
and another would merely broaden the area jeopardized 
by one IMP's failure. Th~ need for reliability and 
autonomy bears directly upon the form of subnet 
communication. This section describes the process of 
message communication within the subnet. 

Message handling 

Hosts communicate with each other via a sequence 
of messages. An IMP takes in a message from its Host 
computer in segments, forms these segments into 
packets (whose maximum size is approximately 1000 
bits), and ships the packets separately into the net­
work. The destination IMP reassembles the packets 
and delivers them in sequence to the receiving Host, 
who obtains them as a single unit. This segmentation 
of a message during transmission is completely in-

visible to the Host computers. Figures 3, 4, and 5 
illustrate aspects of message handling. 

The transmitting Host attaches an identifying 
leader to the beginning of each message. The IMP 
forms a header by adqing further information for 
network use and attaches this header to each packet 
of the message. 

Each packet is individually routed from IMP-to­
IMP through the network toward the destination. At 
each IMP along the way, the transmitting hardware 
generates initial and terminal framing characters and 
parity check digits that are shipped with the packet 
and are used for error detection by the receiving hard­
ware of the next IMP. 

Errors in transmission can affect a packet by de­
stroying the framing and/or by modifying the data 
content. If the framing is disturbed in any way, the 
packet either will not be recognized or will be rejected 
by the receiver. In addition, the check digits provide 
protection against errors that affect only the data. 
The check digits can detect all patterns of four or 
fewer errors occurring within a packet, and any single 
error burst of a length less than twenty-four bits. An 
overwhelming majority of all other possible errors (all 
but about one in 224) are also detected. Thus, the 
mean time between undetected errors in the subnet 
should be on the order of years. 

As a packet moves through the subnet, each IMP 
stores the packet until a positive acknowledgment is 
returned from the succeeding IMP. This acknowledg­
ment indicates that the message was received without 
error and was accepted. Once an IMP has accepted a 
packet and returned a positive acknowledgment, it 
holds onto that packet tenaciously until it in turn 
receives an acknowledgment from the succeeding 
IMP. Under no circumstances (except for Host or 
IMP malfunction) will an IMP discard a packet after 
it has generated a positive acknowledgment. However, 
an IMP is always free to refuse a packet by simply 
not returning a positive acknowledgment. It may do 
this for any of several reasons: the packet may have 

PACKET PACKET 

ACKI ACK 2 ------- -------
IMP READY FOR IMP READY FOR 

NEXT MESSAGE NEXT MESSAGE 

__ ~C.!!_ _ _A£.K.l_ 

Figure 4-RFNMs and acknowledgments 
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been received in error, the IMP may be busy, the IMP 
buffer storage may be temporarily full, etc. 

At the transmitting IMP, such discard of a packet 
is readily detected by the absence of a returned ac­
knowledgment within a reasonable time interval 
(e.g., 100 msec). Such packets are retransmitted, 
perhaps along a different route. Acknowledgments 
themselves are not acknowledged, although they are 
error checked in the usual fashion. Loss of an acknowl­
edgment results in the eventual retransmission of the 
packet; the destination IMP sorts out the resulting 
duplication by using a message number and a packet 
number in the header. 

The packets of a message arrive at the destination 
IMP, possibly out of order, where they are reassem­
bled. The header is then stripped off each packet and 
a leader, identifying the source Host and the link, 
followed by the reassembled message is then delivered 
to the destination Host as a single unit. See Figure 3. 

Routing algorithIn 

The routing algorithm directs each packet to its 
destination along a path for which the total estimated 
transit time is smallest. This path is not determined 
in advance. Instead, each IMP individually decides 
onto which of its output lines to transmit a packet 
addressed to another destination. This selection is 
made by a fast and simple table lookup procedure. 
For each possible destination, an entry in the table 
designates the appropriate next leg. These entries 
reflect line or IMP trouble, traffic congestion, and 
current subnet connectivity. This routing table is 
updated every halfsecond as follows: 

Each IMP estimates the delay it expects a packet to 
encounter in reaching every possible destination over 
each of its output lines. It selects the minimum delay 
estimate for each destination and periodically (about 
twice a second) passes these estimates to its immediate 
neighbors. Each IMP then constructs its own routing 
table by combining its neighbors' estimates with its 
own estimates of the delay to that neighbor. The 
estimated delay to each neighbor is based upon both 
queue lengths and the recent performance of the 
connecting communication circuit. For each destina­
tion, the table is then made to specify that selected 
output line for which the sum of the estimated delay 
to the neighbor plus the neighbor's delay to the desti­
nation is smallest. 

The routing table is consistently and dynamically 
updated to adjust for changing conditions in the 
network. The system is adaptive to the ups and downs 
of lines, IMPs, and congestion; it does not tequire the 
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Figure 5-Format of packet on phone line 

IJJIP to know the topology of the network. In particular, 
an IMP need not even know the identity of its im­
mediate neighbors. Thus, the leased circuits could be 
reconfigured to a new topology without requiring any 
changes to the IMPs. 

Subnet failures 

The network is designed to be largely invulnerable 
to circuit or IMP failure as well as to outages for 
maintenance. Special status and test messages are 
employed to help cope with various failures. In the 
absence of regular packets for transmission over a 
line, the IMP program transmits special hello packets 
at half-second intervals. The acknowledgment for a 
hello packet is an I heard you packet. 

A dead line is defined by the sustained absence 
(approximately 2.5 seconds) on that line of either 
received regular packets or acknowledgments; no 
regular packets will be routed onto a dead line, and 
any packets awaiting transmission will be rerouted. 
Routing tables in the network are adjusted automati­
cally to reflect the loss. We require acknowledgment 
of thirty consecutive hello packets (an event which 
consumes at least 15 seconds), before a dead line is 
defined to be alive once again. 

A dead line may reflect trouble either in the com­
munication facilities or in the neighboring IMP itself. 
Normal line errors caused by dropouts, impulse noise, 
or other conditions should not result in a dead line, 
because such errors typically last only a few milli­
seconds, and only occasionally as long as a few tenths 
of a second. Therefore, we expect that a line will be 
defined as dead only when serious trouble conditions 
occur. If dead lines eliminate all routes between two 
IMPs, the IMPs are said to be disconnected and each 
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of these IMPs will discard messages destined for the 
other. Disconnected IMPs cannot be rapidly detected 
from the delay estimates that arrive from neighboring 
IMPs. Consequently, additional information is trans­
mitted between neighboring IMPs to help detect this 
condition. Each IMP transmits to its neighbors the 
length of the shortest existing path (i.e., number of 
IMPs) from itself to each destination. To the smallest 
such received number per destination, the IMP adds 
one. This incremented number is the length of the 
shortest path from that IMP to the destination. If 
the length ever exceeds the number of network nodes, 
the destination IMP is assumed to be unreachable 
and therefore disconnected. 

Messages intended for dead Hosts (which are not 
the same as dead IMPs) cannot be delivered; there­
fore, these messages require special handling to avoid 
indefinite circulation in the network and spurious 
arrival at a later time. Such messages are purged 
from the network either at the source IMP or at the 
destination IMP. Dead Host information is regularly 
transmitted with the routing information. A Host 
computer is notified about another dead Host only 
when attempting to send a message to that Host. 

An IMP may detect a major failure in one of three 
ways: (1) A packet expected for reassembly of a multi­
ple packet message does not arrive. If a message is 
not fully reassembled in 15 minutes, the system pre­
sumes a failure. The message is discarded by the 
destination IMP and both the source IMP and the 
source Host are notified via a special RFNM. (2) The 
Host does not take a message from its IMP. If the 
Host has not taken a message after 15 minutes, the 
system presumes that it will never take the message. 
Therefore, as in the previous case, the message is 
discarded and a special RFNM is returned to the 
source Host. (3) A link is never unblocked. If a link 
remains blocked for longer than 20 minutes, the sys­
tem again presumes a failure; the link is then unblocked 
and an error message is sent to the source Host. (This 
last time interval is slightly longer than the others so 
that the failure mechanisms for the first two situations 
will have a chance to operate and unblock the link.) 

Reliability and recovery procedures 

For higher system reliability, special attention was 
placed on intrinsic reliability, hardware test capabili­
ties, hardware/software failure recovery techniques, 
and proper administrative mechanisms for failure 
management. 

. To improve intrinsic reliability, we decided to rug­
gedize the IMP hard,,~are, thus incurring an approxi-

mately ten percent hardware cost penalty. For ease 
in maintenance, debugging, program revision, and 
analysis of performance, all IMPs are as similar as 
possible; the operational program and the hardware are 
nearly identical in all IMPs. 

To improve hardware test capabilities, we built 
special crosspatching features into the IMP's interface 
hardware; these features allow program-controlled 
connection of output lines to corresponding input lines. 
These crosspatching features have been invaluable in 
testing IMPs before and during field installation, and 
they should continue to be very useful when troubles 
occur in the operating network. These hardware test 
features are employed bya special hardware test 
program and may also be employed by the operational 
program when a line difficulty occurs. 

The IMP includes a 512-word block of protected 
memory that secures special recovery programs. An 
IMP can recover from an IMP failure in two ways: (1) 
In the event of power failure, a power-fail interrupt 
permits the IMP to reach a clean stop before the 
program is destroyed. When power returns, a special 
automatic restart feature turns the IMP back on and 
restarts the program. (We considered several possi­
bilities for handling the packets found in an IMP 
during a power failure and concluded that no plan to 
salvage the packets was both practical and foolproof. 
For example, we cannot know whether the packet in 
transmission at the time of failure successfully left 
the machine before the power failed. Therefore, we 
decided simply to discard all the packets and restart 
the program.) (2) The second recovery mechanism is a 
"watchdog timer", which transfers control to pro­
tected memory whenever the program neglects this 
timer for about one minute. In the event of such 
transfer, the program in unprotected memory is pre­
sumed to be destroyed (either through a hardware 
transient or a software failure). The program in pro­
tected memory sends a reload request down a phone 
line selected at random. The neighboring IMP responds 
by sending a copy of its whole program back on the 
phone line. A normal IMP would discard this message 
because it is too long, but the recovering IMP can use 
it to reload its program. 

Everything unique to a particular IMP must thus 
reside in its protected memory. Only one register 
(containing the IMP number) currently differs from 
IMP-to-IMP. The process of reloading, which requires 
a few seconds, can be tried repeatedly until successful; 
however, if after several minutes the program has not 
resumed operation, a later phase of the watchdog 
timer shuts off all power to the IMP. 

In addition to providing recovery mechanisms for 
both network and IMP failures, we have incorporated 
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into the subnet a control center that monitors network 
status and handles trouble reports. The control center, 
located at a network node, initiates and follows up 
any corrective actions necessary for proper subnet 
functioning. Furthermore, this center controls and 
schedules any modifications to the subnet. 

In trospection 

Because the network is experimental in nature, 
considerable effort has been allocated to developing 
tools whereby the network can supply measures of 
its own performance. The operational IMP program is 
capable of taking statistics on its own performance on 
a regular basis; this function may be turned on and 
off remotely. The various kinds of resulting statistics, 
which are sent via the network to a selected Host for 
analysis, include "snapshots", ten-second summaries, 
and packet arrival times. Snapshots are summaries of 
the internal status of queue lengths and routing in­
formation. A synchronization procedure allows these 
snapshots, which are taken every half second, to occur 
at roughly the same time in all network IMPs; a Host 
receiving such snapshot messages could presumably 
build up an instantaneous picture of overall network 
status. Ten-second summaries include such IMP­
generated statistics as the number of processed messages 
of each kind, the number of retransmissions, the traffic 
to and from the local Host, and so forth; this statistical 
data is sent to a selecte.~ Host every ten seconds. In 
addition, a record of actual packet arrival times on 
modem lines allows for the modeling of line traffic. 
(As part of its research activity, the group at UCLA is 
acting as a network measurement center; thus, sta­
tistics for analysIs will normally be routed to the 
UCLA Host.) 

Perhaps the most powerful capability for network 
introspection is tracing. Any Host message sent into 
the network may have a "trace bit" set in the leader. 
Whenever it processes a packet from such a message, 
the IMP keeps special records of what happens to 
that packet-e.g., how long the packet is on various 
queues, when it comes in and leaves, etc. Each IMP 
that handles the traced packet generates special trace 
report messages that are sent to a specified Host; thus, 
a complete analysis of what has happened to that 
message can be made. When used in an orderly way, 
this tracing facility will aid in understanding at a very 
detailed level the behavior of routing algorithms and 
the behavior of the network under changing load 
conditions. 
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Flexibili ty 

Flexibility for modifications in IMP usage has been 
provided by severa( built-in arrangements: (1) pro­
vision within the existing cabinet for an additional 
4K core bank; (2) modularity of the hardware inter­
faces; (3) provision for operation with data circuits of 
widely different rates; (4) a program organization 
involving many nearly self-contained subprograms; 
and (5) provision for Host-unique subprograms in the 
IMP program structure. 

This last aspect of flexibility presents a somewhat 
controversial design choice. There are many advantages 
to keeping all IMP software nearly identical. Because 
of the experimental nature of the network, however, 
we do not yet know whether this luxury of identical 
programs will be an optimal arrangement. Several 
potential applications of "Host-unique" IMP software 
have been considered-e.g., using ASCII conversion 
routines in each IMP to establish a "Network ASCII" 
and possibly to simplify the protocol problems of each 
Host. As of now; the operational IMP program in­
cludes a structure that permits unique software plug-in 
packages at each Host site, but no plug-ins have yet 
been constructed. 

THE HARDWARE 

We selected a Honeywell DDP-516 for the IMP 
processor because we wanted a machine that could 
easily handle currently anticipated maximum traffic­
and that had already been proven in the field. We 
considered only economic machines with fast cycle 
times and good instruction sets. Furthermore, we 
needed a machine with a particularly good I/O capa­
bility and that was available in a ruggedized version. 
The geographical proximity of the supplier to BBN 
was also a consideration. 

The basic machine has a 16-bit word length and a 
O.96-,usec memory cycle. The IMP version is packaged 
in a single cabinet, and includes a 12K memory, a set 
of 16 multiplexed channels (which implement a 4-cycle 
data break), a set of 16 priority interrupts, a 100-,usec 
clock, and a set of programmable status lights. Also 
packaged within this cabinet are special modular 
interfaces for connecting the IMP to phone line 
modems and to Host computers; these interfaces use 
the same kind of 1 MHz and 5 MHz DTL packs from 
which the main machine is constructed. In addition, a 
number of features that have been incorporated make 
the IMP somewhat resilient to a variety of failures. 

Teletypes and high-speed paper tape readers which 
are attached to the IMPs are used only for mainte-
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Figure 6-The IMP 

nance, debugging, and system modification; in normal 
operation, the IMP runs without any moving parts 
except fans. Within the cabinet, space has been re­
served for an additional 4K memory. Figure 6 is a 
picture of an IMP, and Figure 7 shows its configura­
tion. 

Ruggedization of computer hardware for use in 
friendly environments is somewhat unusual; however, 
we felt that the considerable difficulty that IMP 
failures can cause the network justified this step. 
Although the ruggedized unit is not fully "qualified" 
to MIL specs, it does have greater resistance to tem­
perature variance, mechanical shock and vibration, 
radio frequency interference, and power line noise. 
Weare confident that this ruggedization will increase 
the mean time to failure. 

Modular Host and modem interfaces allow an IMP 
to be individually configured for each network node. 
The modularity, however, does not take the form of 
pluggable units and, except for the possibility of 
adding interfaces into reserved frame space, recon-

figuration is impractical. Various configurations allow 
for up to two Hosts and five modems, three Hosts and 
four modems, etc. Each modem interface requires 
approximately one-fourth the amount of logic used in 
the C.P.V. The Host interface is somewhat smaller 
(about one-sixth of the C.P.V.). 

Interfaces to the Host and to the modems have 
certain common characteristics. Both are full duplex, 
both may be crosspatched under program control to 
test their operation, and both function in the same 
general manner. To send a packet, the IMP program 
sets up memory pointers to the packet and then 
activates the interface via a programmable control 
pulse. The interface takes successive words from the 
memory using its assigned output data channel and 
transmits them bit-serially (to the Host or to the 
modem). When the memory buffer has thus been 
emptied, the interface notifies the program via an 
interrupt that the job has been completed. To receive 
information, the program first sets pointers to the 
allocated space in the memory into which the informa­
tion is to flow. Vsing a control pulse it then readies 
the interface to receive. When information starts to 
arrive (here again bit-serially), it is assembled into 
16-bit words and stored into the IMP memory. When 
either the allocated memory space is full or the end of 
the data train is detected, the interface notifies the 
program via an interrupt. 

The modem interfaces deal with the phone lines in 
terms of 8-bit characters; the interfaces idle by sending 
and receiving a sync pattern that keeps them in charac­
ter sync. Bit sync is maintained by the modems them­
selves, which provide both transmit .and receive clock­
ing signals to the interfaces. When the program initiates 

12 K MEMORY 
(16 BIT WORD 

O. 96~s) 

100 ~s CLOCK 

WATCHDOG TIMER 

STATUS LIGHTS 

pn~ER FAIL/ 
AUTO-RESTART 

Figure 7-IMP configuration 
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transmission, the hardware first transmits a pair of 
initial framing characters (DLE, STX). Next, the 
text of the packet is taken word by word from the 
memory and shifted serially onto the phone line. At 
the end of the data, the hardware generates a pair of 
terminal framing characters (DLE, ETX) and shifts 
them onto the phone line. After the terminal framing 
characters, the hardware generates and transmits 24 
check bits. Finally, the interface returns to idle (sync) 
mode. 

The hardware doubles any DLE characters within 
the binary data train (that is, transmits them twice), 
thereby permitting the receiving interface hardware to 
distinguish them from the terminal framing characters 
and to remove the duplicate. Transmitted packets 
are of a known maximum size; therefore, any overflow 
of input buffer length is evidence of erroneous trans-:, 
mission. Format errors in the framing also register as 
errors. Check bits are computed from the received 
data and compared with the received check bits to 
detect errors in the text. Any of these errors set a 
flag and cause a program interrupt. Before processing 
a packet, the program checks the error flag to deter­
mine whether the packet was received correctly. 

IMP SOFTWARE 

Implementation of the IMPs required the develop­
ment of a sophisticated operational computer program 
and the development of several auxiliary programs for 
hardware tests, program construction, and debugging. 
This section discusses in detail the design of the opera­
tional program and briefly describes the auxiliary 
software. 

Operational program 

The principal function of the operational program 
is the processing of packets. This processing includes 
segmentation of Host messages into packets for routing 
and transmission, building of headers, receiving, 
routing and transmitting of store and forward packets, 
retransmitting of unacknowledged packets, reassem­
bling received packets into messages for transmission 
to the Host, and generating of RFNMs and acknowl­
edgments. The program also monitors network status, 
gathers statistics, and performs on-line testing. This 
real-time program is an efficient, interrupt-driven, 
involute machine language program that occupies 
about 6000 words of memory. It was designed, con­
structed, and debugged over a period of about a year 
by three programmers. 

The entire program is composed of twelve func-
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tionally distinct pieces; each piece occupies no more 
than one or two pages of core (512 words per page). 
These programs communicate primarily through com­
mon registers that reside in page zero of the machine 
and that are directly addressable from all pages of 
memory. A map of core storage is shown in Figure 8. 
Seven of the twelve programs are directly involved in 
the flow of packets through the IMP: the task program 
performs the major portion of the packet processing, 
including the reassembly of Host messages; the modem 
programs (IMP-to-Modem and Modem-to-IMP) 
handle interrupts and resetting of buffers for the 
modem channels; the Host programs (IMP-to-Host 
and Host-to-IMP) handle interrupts and resetting of 
buffers for the Host channels, build packet headers 
during input, and construct RFNMs that are returned 
to the source Host during output; the time-out program 
maintains a software clock, times out unacknowledged 
packets for retransmission, and attends to infrequent 
events; the link program assigns and verifies message 
numbers and keeps track of links. A background loop 
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TABLE I-Program Data Structures 

5000 WORDS-MESSAGE BUFFER STORAGE 
120 WORDS-QUEUE POINTERS 
300 WORDS-TRACE BLOCKS 
100 WORDS-REASSEMBLY BLOCKS 
150 WORDS-ROUTING TABLES 
400 WORDS-LINK TABLES 
300 WORDS-STATISTICS TABLES 

contains the remaining five programs and deals with 
initialization, debugging, testing, statistics gathering 
and tracing. After a brief description of data struc­
tures, we will discuss packet processing in some detail. 

Buffer allocation, queues, and tables 

The major system data structures (see Table I) 
consist of buffers and tables. The buffer storage space 
is partitioned into about 70 fixed length buffers, each 
of which is used for storing a single packet. An unused 
buffer is chained onto a free buffer list and is removed 
from this list when it is needed to store an incoming 
packet. A packet, once stored in a buffer, is never 
moved. After a packet has been successfully passed 
along to its Host or to another IMP, its buffer is re­
turned to the free list. The buffer space is partitioned 
in such a way that each process (store and forward, 
traffic, Host traffic, etc.) is always guaranteed some 
buffers. For the sake of program speed and simplicity, 
no attempt is made to retrieve the space wasted by 
partially filled buffers. 

In handling store and forward traffic, all processing 
is on a per packet basis. Further, although traffic to 
and from Hosts is composed of messages, the IMP 
rapidly converts to dealing with packets; the Host 
transmits a message as a single unit but the IMP 
takes it one buffer at a time. As each buffer is filled, 
the program selects another buffer for input until the 
entire message has been provided for. These successive 
buffers will, in general, be scattered throughout the 
memory. An equivalent inverse process occurs on 
output to the Host after all packets of the message 
have arrived at the destination IMP. No attempt is 
ever made to collect the packets of a message into a 
contiguous portion of the memory. 

Buffers currently in use are either dedicated to an 
incoming or an outgoing packet, chained on a queue 
awaiting processing by the program, or being processed. 
Occasionally, a buffer may be simultaneously found on 
two queues; this situation can occur when a packet is 
\vaiting on one queue to be forwarded and on another 
to be acknowledged. 

There are four principal types of queues: 

Task: Packets received on Host channels are placed 
on the Host task queue. All received acknowledg­
ments, dead Host and routing information, I heard 
you and hello packets are placed on the system task 
queue; all other packets from the modems are placed 
on the modem task queue. The program services the 
system task queue first, then the Host task queue, and 
finally the modem task queue. 

Output: A separate output queue is constructed for 
each modem channel and each Host channel. Each 
modem output queue is subdivided into an acknowl­
edgment queue, a priority queue, a RFNM queue, 
and a regular message queue, which are serviced in 
that order. Each Host output queue is subdivided into 
a control message queue, a priority queue, and a 
regular message queue, which are also serviced in the 
indicated order. 

Sent: A separate queue for each modem channel con­
tains packets that have already been transmitted on 
that line but for which no acknowledgment has yet 
been received. 

Reassembly: The reassembly queue contains those 
packets that are being reassembled into messages for 
the Host. 

Tables in core are allocated for the storage of queue 
pointers, for trace blocks, for reassembly information, 
for statistics, and for links. Most noteworthy of these 
is the link table, which is used at the source IMP for 
assignment of message numbers and for blocking and 
unblocking links, and at the destination IMP to 
verify message numbers for sequence control. 

Packet flow and program. structure 

Figure 9 is a schematic drawing of packet process­
ing; the processing programs are described below. 

The H ost-to-I M P routine (H ~ I) handles messages 
being transmitted from the local site. The routine 
uses the leader to construct a header that is prefixed 
to each packet of the message. It also creates a link 
for the message if necessary, blocks the link, puts the 
packets of the message on the Host task queue for 
further processing by the task routine, and triggers 
the programmable task interrupt. The routine then 
acquires a free buffer and sets up a new input. The 
r~)Utine tests a hardware trouble indicator, verifies the 
message format, and checks whether or not the destina­
tion is dead, the link table is full, or the link blocked. 
The routine is serially reentrant and services all Hosts 
connected to the IMP. 
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The lJ!Jodem-to-IMP routine (M -? I) handles inputs 
from the modems. This routine consists of several 
identical routines, one for each modem channel. (Such 
duplication is useful to obtain higher speed.) This 
routine sets up an input buffer (normally obtained 
from the free list), places the received packet on the 
appropriate task queue, and triggers the programmable 
task interrupt. Should no free buffers be available for 
input, the buffer at the head of the modem task queue 
is preempted. If the modem task queue is also empty, 
the received packet is discarded by setting up its 
buffer for input. However, a sufficient number of free 
buffers are specifically reserved to assure that received 
acknowledgments, routing packets, and the like are 
rarely discarded. 

The task routine uses the header information to 
direct packets to their proper destination. The task 
routine is driven by the task interrupt, which is set 
whenever a packet is put on a task queue. The task 
routine routes packets from the Host task queue onto 
an output queue determined from the routing algorithm. 

For each packet on the modem task queue, the task 
routine first determines whether sufficient buffer space 
is available. If the IMP has a shortage of store and 
forward buffers, the buffers on the modem task queue 
are simply returned to the free list without further 
processing. Normally, however, an acknowledgment 
packet is constructed and put near the front of the 
appropriate modem output queue. The destination of 
the packet is then inspected. If the packet is not for 
the local site, the routing algorithm selects a modem 
output queue for the packet. If a packet for the local 
site is a RFNM, the corresponding link is unblocked 
and the RFNM is put on a queue to the Host. If the 
packet is not a RFNM, it is joined with others of the 
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same message on the reassembly queue. Whenever a 
message is completely reassembled, the packets of 
the message are put on an output queue to the Host 
for processing by the IMP-to-Host routine. 

In processing the system task queue, the task routine 
returns to the free list those buffers from the sent 
queue that have been referenced by acknowledgments. 
Any packets skipped over by an acknowledgment are 
designated for retransmission. Routing, I heard you, 
and hello packets are processed In a straightforward 
fashion. 

The IlJ!JP-to-lJ!J odem routine (I -? M) transmits 
successive packets from the Modem output queue. 
After completing the output, this routine places any 
packet requiring acknowledgment on the sent queue. 

The IMP-to-Host routine (I -? H) sets up successive 
outputs of packets on the Host output queues and 
constructs a RFNM for each non-control message 
delivered to a Host. RFNM packets are returned to 
the system via the Host task queue. 

The time-out routine is started every 25.6 msec 
(called the time-out period) by a clock interrupt. 
The routine has three sections: the fast time-out 
routine, which "wakes up" any Host or modem inter­
rupt routine that has languished (for example, when 
the Host input routine could not immediately start a 
new input because of a shortage in buffer space); the 
middle time-out routine, which retransmits any packets 
that have been too long on a modem sent queue; and 
the slow time-out routine, which marks lines as alive 
or dead, updates the routing tables and does long 
term garbage collection of queues and other data 
structures. (For example, it protects the system from 
the cumulative effect of such failures as a lost packet 
of a multiple packet message, where buffers are tied 
up in message reassembly.) It also deletes links auto­
matically after 15 seconds of disuse, after 20 minutes 
of blocking, or when an IMP goes down. 

These three routines are executed in the following 
pattern: 

FFFF FFFF FFFF FFFF FFFF FFFF ... 

M M M M M 

S 

and, although they run off a common interrupt, are 
constructed to allow faster routines to interrupt slower 
ones should a slower routine not complete execution 
before the next time-out period. 

The link routine enters, examines, and deletes entries 
from the link table. A table containing a separate 
message number entry for many links to every possible 
Host would be prohibitively large. Therefore, . the 
table contains entries only for each of 63 total out-
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going links at any Host site. Hashing is used to speed 
accessing of this table, but the link program is still 
quite costly; it uses about ten percent of both speed 
and space in a conceptually trivial task. 

Initialization and background loop 

The IMP program starts in an initialization section 
that builds the initial data structures, prepares for 
inputs from modem and Host channels, and resets all 
program switches to their nominal state. The program 
then falls into the background loop, which is an end­
lessly repeated series of low-priority subroutines that 
are interrupted to handle normal traffic. 

The programs in the IMP background loop perform 
a variety of functions: TTY is used to handle the IMP 
Teletype traffic; DEBUG, to inspect or change IMP 
core memory; TRACE, to transmit collected informa­
tion about traced packets; STATISTICS, to take and 
transmit network and IMP statistics; P ARAMETER­
CHANGE, to alter the values of selected IMP pa­
rameters; and DISCARD, to throwaway packets. 
Selected Hosts and IMPs, particularly the Network 
Measurement Center and the Network Control Center, 
will find it necessary or useful to communicate with 
one or more of these background loop programs. So 
that these programs may send and receive messages 
from the network, they are treated as "fake Hosts". 
Rather than duplicating portions of the large IMP-to­
Host and Host-to-IMP routines, the background loop 
programs are treated as if they were Hosts, and they 
can thereby utilize existing programs. The "For IMP" 
bit or the "From IMP" bit in the leader indicates 
that a given message is for or from a fake Host program 
in the . IMP. Almost all of the background loop is 
devoted to running these programs. 

The TTY program assembles characters from the 
Teletype into network messages and decodes network 
messages into characters for the Teletype; TTY's 
normal message destination is the DEBUG program 
at its own IMP; however, TTY can be made to com­
municate with any other IMP Teletype, any other 
IMP DEBUG program or any Host program with 
compatible format. 

The DEBUG program permits the operational· 
program to be inspected and changed. Although its 
normal message source is the TTY program at its 
own IMP, DEBUG will respond to a message of the 
correct format from any source. This program is 
normally inhibited from changing the operational 
IMP program; local operator intervention is required to 
activate the program's full power. 

The STATISTICS program collects measurements 

about network operation and periodically transmits 
them to the Network Measurement Center. This 
program sends but does not receive messages. STA­
TISTICS has a mechanism .for collecting measure­
ments over 10-second intervals and for taking half­
second snapshots of IMP queue lengths and routing 
tables. It can also generate artificial traffic to load 
the network. When turned on, STATISTICS uses 10 
to 20 percent of the machine capacity and generates a 
noticeable amount of phone line traffic. 

Other programs in the background loop drive local 
status lights and operate the parameter change routine. 
A thirty-two word parameter table controls the opera­
tion of the TRACE and STATISTICS programs and 
includes spares for expansion; the PARAMETER­
CHANGE program accepts messages that change 
these parameters. 

Control organization 

It is characteristic of the IMP system that many 
of the main programs are entered both as subroutine 
calls from other programs and as interrupt calls from 
the hardware. The resulting control structure is shown 
in Figure 10. The programs are arranged in a priority 
order; control passes upward in the chain whenever a 
hardware interrupt occurs or the current program 
decides that the time has come to run a higher priority 
program, and control passes downward only when 
the higher priority programs are finished. No program 
may execute either itself or a lower priority program; 
however, a program may freely execute a higher pri­
ority program. This rule is similar to the usual rules 
concerning priority interrupt routines. 

In one important case, however, control must pass 
from a higher priority program to a lower priority 
program-namely, from the several input routines to 
the TASK routine. For this special case, the com­
puter hardware was modified to include a low-priority 
hardware interrupt that can De set by the program. 
When this interrupt has been honored (i.e., when all 
other interrupts have been serviced), the TASK 
routine is executed. Thus, control is directed where 
needed without violating the priority rules. 

Some routines must occasionally wait for long inter­
vals of time, for example, when the Host-to-IMP 
routine must wait for a link to unblock. Stopping the 
whole system would be intolerable; therefore, should 
the need arise, such a routine is dismissed, and the 
TIMEOUT routine will later transfer control to the 
waiting routine. 

The control structure and the partition of responsi­
bility among various programs achieve the following 
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timing goals: 

1. No program stops or delays the system while 
waiting for an event. 

2. The program gracefully adjusts to the situation 
where the machine becomes compute-bound. 

3. The Modem-to-IMP routine can deliver its 
current packet to the TASK routine before the 
next packet arrives and can always prepare for 
successive packet inputs on each line. This 
timing is critical because a slight delay here 
might require retransmission of the entire packet. 
To achieve this result, separate routines (one per 
phone line) interrupt each other freely after new 
buffers have been set up. 

4. The program will almost always deliver packets 
waiting to be sent as fast as they can be accepted 
by the phone line. 

5. Necessary periodic processes (in the time-out 
routine) are always permitted to run, and do 
not interfere with input-output processes. 

Support software 

Designing a real-time program for a small computer 
with many high rate I/O channels is a specialized kind 
of software problem. The operational program requires 
not only unusual techniques but also extra software 
tools; often the importance of such extra tools is not 
recognized. Further, even when these issues are recog­
nized, the effort needed to construct such tools may be 
seriously underestimated. The development of the 
IMP system required the following kinds of supporting 
software: 

1. Programs to test the hardware. 
2. Tools to help debug the system. 
3. A Host simulator. 
4. An efficient assembly process. 

So far, three hardware test programs have been 
developed. The first and largest is a complete program 
for testing all the special hardware features in the 
IMP. This program permits running any or all of the 
modem interfaces in a crosspatched mode; it even 
permits operating together several IMPs in a test 
mode. The second hardware test program runs a 
detailed phone line test that provides statistics on 
phone line errors. The final program simulates the 
modem interface check register whose complex be­
havior is otherwise difficult _to predict. 

The software. debugging tools exist in two forms. 
Initially we designed a simple stand-alone debugging 
program with the capability to do little more than 
examine and change individual core registers from the 
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console Teletype. Subsequently, we embedded a 
version of the stand-alone debugging program in to 
the operational program. This operational debugging 
program not only provides debugging assistance at a 
single location but also may be used in network testing 
and network debugging. 

The initial implementation of the IMP software 
took place without connecting to a true Host. To 
permit checkout of the Host-related portions of the 
operational program, we built a "Host Simulator" 
that takes input from the console Teletype and feeds 
the Host routines exactly as though the input had 
originated in a real Host. Similarly, output messages 
for a destination Host are received by the simulator 
and typed out on the console Teletype. 

Without recourse to expensive additional periph­
erals, the assembly facilities on the DDP-516 are 
inadequate for a large program. (For example, a listing 
of the IMP program would require approximately 20 
hours of Teletype output. ) We therefore used other 
locally available facilities to assist in the assembly 
process. Specifically, we used a PDP-1 text editor to 
compose and edit the programs, assembled on the 
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TABLE II-Transit Times And Message Rates 

Minimum Maximum 

SINGLE WORD MESSAGE 

Transit Time 
Round-trip 
Max. Message Rate/Link 

5 msec 
10 msec 

100/sec 

SINGLE FULL PACKET MESSAGE 

Transit Time 
Round-trip 
Max. Message Rate/Link 

8-P ACKET MESSAGE 

Transit Time 
Round-trip 
Max. Message Rate/Link 

45 msec 
50 msec 
20/sec 

265 msec 
195 msec 

5/sec 

50 msec 
100 msec 

lO/sec 

140 msec 
190 msec 

5/sec 

360 msec 
320 msec 

3/sec 

DDP-516, and listed the program on the SDS 940 
line printer. Use of this assembly process required 
minor modification of existing PDP-1 and SDS 940 
support software 

PROJECTED IMP PERFORMANCE 

At this writing, the subnet has not yet been sub­
jected to realistic load conditions; consequently, very 
little experimental data is available. However, we have 
made some estimates of projected performance of the 
IMP program and we describe these estimates below. 

Host traffic and message delays 

In the subnet, the Host-to-Host transit time and 
the round-trip time (for RFNM receipt) depend upon 
routing and message length. Since only one message 
at a time may be present on a given link, the reciprocal 
of the round-trip delay is the maximum message rate 
on a link. The primary factors affecting subnet delays 
are: 

. Propagation delay: Electrical propagation time 
in the Bell system is estimated to be about 10 
J.Lsec per mile. Cross country propagation delay is 
therefore about 30 msec. 

• Modem transmission delay: Because bits enter 
and leave an IMP at a predetermined modem bit 
rate, a packet requires a modem transmission 
time proportional to its length (20 J.Lsec per bit on 
a 50-kilobit line). 

. Queueing delay: Time spent waiting in the IMP 
for transmission of previous packets on a queue. 
Such waiting may occur either at an intermediate 
IMP or in connection with terminal IMP trans­
missions into the destination Host. 

. IMP processing delay: The time required for the 
IMP program to process a packet is about 0.35 
msec for a store-and-forward packet. 

Because the queueing delay depends heavily upon 
the detailed traffic load in the network, an estimate of 
queueing delay will not be available until we gain 
considerable experience with network operation. In 
Table II, we show an estimate of the one-way and 
round-trip transit times and the corresponding maxi­
mum message rate per link, assuming the negligible 
queueing delay of a lightly loaded net. In this table, 
"minimum" delay represents a short hop between 
two nearby IMPs, and "maximum" delay represents a 
cross-country path involving five IMPs. In all cases 
the delays are well within the desired half-second 
goal. 

In a lightly-loaded network with a mixture of nearby 
and distant destinations, an example of heavy Host 
traffic into its IMP might be that of 20 links carrying 
ten single-word messages per second and four more 
links, each carrying one eight-packet message per 
second. 

Computational load 

In general, a line fully loaded with short packets 
will require more computation than a line with all 
long packets; therefore the IMP can handle more 
lines in the latter case. In Figure 11, we show a curve 
of the computational utilization of the IMP as a func­
tion of message length for fully-loaded communication 
lines. For example, a 50-kilobit line fully loaded in both 
directions with one-word messages requires slightly 
over 13 percent of the available IMP time. Since a 
line will typically carry a variety of different length 
packets, and each line will be less than fully loaded, 
the computational load per line will actually be much 
less. 

Throughput is defined to be the maximum number 
of Host data bits that may traverse an IMP each 
second. The actual number of bits entering the IMP' 
per second is somewhat larger than the throughput 
because of such overhead as headers, RFNMs, and 
acknowledgments. The number of bits on the lines are 
still larger because of additional line overhead such 
as framing and error control characters. (Each packet 
on the phone line contains seventeen characters of 
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overhead, nine of which are removed before the packet 
enters an IMP.) 

The computational limit on the IMP throughput is 
approximately 700,000 bits per second. Figure 12 
shows maximum throughput as a function of message 
length. The difference between the throughput curve 
and the line traffic curve represents overhead. 

DISCUSSION 

In this section we state some of our conclusions about 
the design and implementation of the ARPA Network 
and comment on possible future directions. 

We are convinced that use of an IMP-like device is 
a more sensible way to design networks than is use of 
direct Host-to-Host connection. First, for the subnet 
to serve a store-and-forward role, its functions must be 
independent of Host computers, which may often be 
down for extended periods. Second, the IMP program 
is very complex and is highly tailored to the I/O struc­
ture of the DDP-516; building such complex functions 
into special I/O units of each computer that might 
need network connection is probably economically 
inadvisable. Third, because of the desirability of 
having several Host computers at a given site connect 
to the network, it is both more convenient and more 
economic to employ IMPs than to provide all the 
network functions in each of the Host computers. The 
whole notion of a network node serving a multiplexing 
function for complexes of local Hosts and terminals 
lends further support to this conclusion. Finally, 
because we were led to a design having some inter­
IMP dependence; we found it advantageous to have 
identical units at each node, rather than computers 
of different manufacture. 

Considering the multiplexing issue directly, it now 
seems clear that individual network nodes will be 
connected to a wide variety of computer and terminal 
complexes. Even the initial ten-node ARPA Network 
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includes one Host organization that has chosen to 
submultiplex several computers via a single Host 
connection to the IMP. We are now studying variants 
of the IMP design that address this mUltiplexing 
issue, and we also expect to cooperate with other 
groups (such as at the National Physical Laboratory 
in England) that are studying such multiplexing 
techniques. 

The increasing interest in computer networks will 
bring with it an expanding interaction between com­
puters and communication circuits. From the outset, 
we viewed the ARPA Network as a systems engineer­
ing problem, including the portion of the system sup­
plied by the common carriers. Although we found the 
carriers to be properly concerned about circuit per­
formance (the basic circuit performance to date has 
been quite satisfactory), we found it difficult to work 
with the carriers cooperatively on the technical details, 
packaging, and implementation of the communication 
circuit terminal equipment; as a result, the present 
physical installations of circuit terminal equipment 
are at best inelegant and inconvenient. In the longer 
run, for reasons of economy, performance, and reliabil­
ity, circuit terminal equipment probably should be 
integrated more closely with computer input/output 
equipment. If the carriers are unable to participate 
conveniently in such integrations, we would expect 
further growth of a competing circuit terminal equip­
ment industry, and more prevalent common carrier 
provision of bare circuits. 

Another aspect of network growth and development 
is the requirement to connect different rate com­
munication circuits to IMP-like devices as a function 
of the particular application. In our own IMP design, 
although there are limitations on total throughput, 

From the collection of the Computer History Museum (www.computerhistory.org)



566 Spring Joint Computer Conference, 1970 

the IMP can be connected to carrier circuits of any 
bit rate up to about 250 kilobits; similarly, the inter­
face to a Host computer can operate over a wide 
range of bit rates. We feel that this flexibility is very 
important because the economics of carrier offerings, 
as well as the us~r requirements, are subject to sur­
prisingly rapid change; even within the time period 
of the present implementation, we have experienced 
such changes. 

At this point, we would like to discuss certain aspects 
of the implementation effort. This project required 
the design, development, and installation of a very 
complex device in a rather short time scale. The diffi­
culty in producing a complex system is highly de­
pendent upon the number of people who are simul­
taneously involved. Small groups can achieve complex 
optimizations of timing, storage, and hardware/ 
software interaction, whereas larger groups can seldom 
achieve such optimizations on a reasonable time 
scale. We chose'to operate with a very small group of 
highly talented people. For example, all software, 
including software tools for assembly, editing, debug­
ging, and equipment testing as well as the main opera­
tional program, involved effort by no more than four 
people at any time. Since so many computer system 
projects involve much larger groups, we feel it is worth 
calling attention to this approach. 

Turning to the future, we plan to work with the 
ARPA Network project along several technical direc­
tions: (1) the experimental operation of the network 
and any modifications required to tune its perfor­
mance; (2) experimental operation of the network with 
higher bandwidth circuits, e.g., 230.4 kilobits; (3) a 
review of IMP variants that might perform multi­
plexing functions; (4) consideration of techniques for 
designing more economical and/ or more· powerful 
IMPs; and (5) participation with the Host organiza­
tions in the very sizeable problem of developing tech­
niques and protocols for the effective utilization of 
the network. 

On a more global level, we anticipate an explosive 
growth of message switched computer networks, not 
just for the interactive pooling of resources, but for 
the simple conveniences and economies to be obtained 
for many classes of digital data communication. We 
believe that the capabilities inherent in the design of 
even the present subnet have broad application to 
other data communication problems of government 
and private industry. 
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